Spaces:
Runtime error
Runtime error
File size: 3,855 Bytes
e5dda8b d347764 e5dda8b d347764 e5dda8b d347764 e5dda8b d347764 e5dda8b d347764 e5dda8b d347764 e5dda8b d347764 e5dda8b d347764 e5dda8b d347764 e5dda8b d347764 e5dda8b d347764 f805e49 e5dda8b f805e49 c737803 d347764 226ec3a d347764 f805e49 d347764 c737803 3946ba6 c737803 d347764 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
"Задание 3"
import gradio as gr
import numpy as np
import torch
import espeakng
import sentencepiece
from datasets import load_dataset
from transformers import pipeline, MarianMTModel, MarianTokenizer, VitsModel, VitsTokenizer
device = "cuda:0" if torch.cuda.is_available() else "cpu"
import phonemizer
model_wav2vec = 'facebook/wav2vec2-lv-60-espeak-cv-ft'
asr_pipe = pipeline("automatic-speech-recognition", model=model_wav2vec, device=device)
# from speech to text
def translate_audio(audio):
outputs = asr_pipe(audio, max_new_tokens=256,
generate_kwargs={"task": "translate"})
return outputs["text"]
# translation
def translate_text(text, from_language, target_language): #to English -mul en, to Russian - en ru
model_name = f'Helsinki-NLP/opus-mt-{from_language}-{target_language}'
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
inputs = tokenizer.encode(text, return_tensors="pt")
outputs = model.generate(inputs, num_beams=4, max_length=50, early_stopping=True)
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return translated_text
# load text-to-speech checkpoint
#model = pipeline("text-to-speech", model="voxxer/speecht5_finetuned_commonvoice_ru_translit")
model = VitsModel.from_pretrained("voxxer/speecht5_finetuned_commonvoice_ru_translit")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus")
def synthesise(text):
translated_text = translate_text(text, 'mul', 'en')
translated_text = translate_text(translate_text, 'en', 'ru')
inputs = tokenizer(translated_text, return_tensors="pt")
input_ids = inputs["input_ids"]
with torch.no_grad():
outputs = model(input_ids)
speech = outputs["waveform"]
return speech.cpu()
def speech_to_speech_translation(audio):
text_from_audio = translate_audio(audio)
print(translated_text)
synthesised_speech = synthesise(text_from_audio)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech[0]
title = "Cascaded STST"
description = """
* В начале происходит распознавание речи с помощью модели facebook/wav2vec2-lv-60-espeak-cv-ft и на выходе получается текст на любом из 60 языков.
* Затем полученный текст переводится сначала на английский с помощью Helsinki-NLP/opus-mt-mul-en, а потом на русский с помощью Helsinki-NLP/opus-mt-en-ru
* На последнем шаге полученный текст озвучивается с помощью fine-tune-говой версии microsoft/speecht5_tts - voxxer/speecht5_finetuned_commonvoice_ru_translit
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Russian. Demo uses facebook/mms-tts-rus model for text-to-speech:

"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()
|