File size: 20,936 Bytes
562fd4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
939e89f
 
 
 
 
 
562fd4c
 
 
 
 
 
 
 
 
 
 
 
 
704db5a
562fd4c
 
 
 
17777da
 
562fd4c
 
 
 
704db5a
 
562fd4c
 
 
 
 
 
 
 
a02b691
562fd4c
 
a123370
 
562fd4c
 
 
2dc1d37
a02b691
704db5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a02b691
704db5a
 
 
 
 
 
 
 
 
3c16620
 
704db5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a02b691
704db5a
 
 
 
 
 
 
562fd4c
 
07f2831
3c16620
562fd4c
 
bf2146f
704db5a
 
 
562fd4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfac6cd
 
 
 
 
416ea46
 
bfac6cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f00f91b
4191566
3c16620
 
bfac6cd
 
 
 
f00f91b
75c72c3
f00f91b
 
bfac6cd
 
4d1a7d2
900612e
d9bd77d
bfac6cd
 
a9d6e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c16620
 
 
 
 
 
 
 
 
 
a9d6e82
 
 
 
 
 
91c383d
 
336b7b8
 
 
d9bd77d
a9d6e82
 
 
336b7b8
a9d6e82
 
 
3c16620
336b7b8
a9d6e82
336b7b8
 
a9d6e82
91c383d
 
a9d6e82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c16620
 
 
 
 
 
 
 
 
 
a9d6e82
 
 
 
 
 
 
 
6e65e24
9fcd98b
6e65e24
 
a9d6e82
 
 
75c72c3
a9d6e82
 
 
3c16620
336b7b8
 
 
a9d6e82
2dc1d37
562fd4c
bfac6cd
 
093d444
bfac6cd
093d444
 
 
 
bfac6cd
093d444
bfac6cd
093d444
 
bfac6cd
093d444
 
6b95e7c
bfac6cd
093d444
 
 
 
 
 
 
 
bfac6cd
 
 
093d444
 
 
 
5463b93
a9d6e82
 
 
 
 
 
 
 
 
 
 
 
3c16620
a9d6e82
 
 
 
 
 
 
 
 
 
 
 
 
3c16620
a9d6e82
 
 
 
 
bfac6cd
a9d6e82
 
 
 
 
 
 
 
 
 
 
 
3c16620
a9d6e82
 
 
 
 
 
 
 
 
 
 
 
 
3c16620
a9d6e82
 
 
 
 
562fd4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb1d34b
12daec9
 
336b7b8
b8af358
 
 
562fd4c
 
bf2146f
 
 
 
 
 
 
 
 
562fd4c
 
bf2146f
 
 
562fd4c
 
 
bf2146f
 
 
 
 
562fd4c
 
 
91c383d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
# Copyright 2024 Guangkai Xu, Zhejiang University. All rights reserved.
#
# Licensed under the CC0-1.0 license;
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://github.com/aim-uofa/GenPercept/blob/main/LICENSE
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# This code is based on Marigold and diffusers codebases
# https://github.com/prs-eth/marigold
# https://github.com/huggingface/diffusers
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/aim-uofa/GenPercept#%EF%B8%8F-citation
# More information about the method can be found at https://github.com/aim-uofa/GenPercept
# --------------------------------------------------------------------------

from __future__ import annotations

import functools
import os
import tempfile
import warnings

import gradio as gr
import numpy as np
import spaces
import torch as torch
from PIL import Image
from gradio_imageslider import ImageSlider

from gradio_patches.examples import Examples
from pipeline_genpercept import GenPerceptPipeline

from diffusers import (
    DiffusionPipeline,
    UNet2DConditionModel,
    AutoencoderKL,
)

warnings.filterwarnings(
    "ignore", message=".*LoginButton created outside of a Blocks context.*"
)

default_image_processing_res = 768
default_image_reproducuble = True

def process_image_check(path_input):
    if path_input is None:
        raise gr.Error(
            "Missing image in the first pane: upload a file or use one from the gallery below."
        )

def process_depth(
    pipe,
    path_input,
    processing_res=default_image_processing_res,
):
    print('line 65', path_input)
    
    name_base, name_ext = os.path.splitext(os.path.basename(path_input))
    print(f"Processing image {name_base}{name_ext}")

    path_output_dir = tempfile.mkdtemp()
    path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
    path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")

    input_image = Image.open(path_input)

    pipe_out = pipe(
        input_image,
        processing_res=processing_res,
        batch_size=1 if processing_res == 0 else 0,
        show_progress_bar=False,
        mode='depth',
    )

    depth_pred = pipe_out.pred_np
    depth_colored = pipe_out.pred_colored

    np.save(path_out_fp32, depth_pred)
    depth_colored.save(path_out_vis)
    
    path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png")
    depth_16bit = (depth_pred * 65535.0).astype(np.uint16)
    Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16")

    return (
        [path_out_16bit, path_out_vis],
        [path_out_16bit, path_out_fp32, path_out_vis],
    )

def process_normal(
    pipe,
    path_input,
    processing_res=default_image_processing_res,
):
    name_base, name_ext = os.path.splitext(os.path.basename(path_input))
    print(f"Processing image {name_base}{name_ext}")

    path_output_dir = tempfile.mkdtemp()
    path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_normal_fp32.npy")
    path_out_vis = os.path.join(path_output_dir, f"{name_base}_normal_colored.png")

    input_image = Image.open(path_input)

    pipe_out = pipe(
        input_image,
        processing_res=processing_res,
        batch_size=1 if processing_res == 0 else 0,
        show_progress_bar=False,
        mode='normal',
    )

    depth_pred = pipe_out.pred_np
    depth_colored = pipe_out.pred_colored

    np.save(path_out_fp32, depth_pred)
    depth_colored.save(path_out_vis)

    return (
        [path_out_vis],
        [path_out_fp32, path_out_vis],
    )

def process_dis(
    pipe,
    path_input,
    processing_res=default_image_processing_res,
):
    name_base, name_ext = os.path.splitext(os.path.basename(path_input))
    print(f"Processing image {name_base}{name_ext}")

    path_output_dir = tempfile.mkdtemp()
    path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_dis_fp32.npy")
    path_out_vis = os.path.join(path_output_dir, f"{name_base}_dis_colored.png")

    input_image = Image.open(path_input)

    pipe_out = pipe(
        input_image,
        processing_res=processing_res,
        batch_size=1 if processing_res == 0 else 0,
        show_progress_bar=False,
        mode='seg',
    )

    depth_pred = pipe_out.pred_np
    depth_colored = pipe_out.pred_colored

    np.save(path_out_fp32, depth_pred)
    depth_colored.save(path_out_vis)

    return (
        [path_out_vis],
        [path_out_fp32, path_out_vis],
    )

def run_demo_server(pipe_depth, pipe_normal, pipe_dis):
    process_pipe_depth = spaces.GPU(functools.partial(process_depth, pipe_depth))
    process_pipe_normal = spaces.GPU(functools.partial(process_normal, pipe_normal))
    process_pipe_dis = spaces.GPU(functools.partial(process_dis, pipe_dis))
    gradio_theme = gr.themes.Default()

    with gr.Blocks(
        theme=gradio_theme,
        title="GenPercept",
        css="""
            #download {
                height: 118px;
            }
            .slider .inner {
                width: 5px;
                background: #FFF;
            }
            .viewport {
                aspect-ratio: 4/3;
            }
            .tabs button.selected {
                font-size: 20px !important;
                color: crimson !important;
            }
            h1 {
                text-align: center;
                display: block;
            }
            h2 {
                text-align: center;
                display: block;
            }
            h3 {
                text-align: center;
                display: block;
            }
            .md_feedback li {
                margin-bottom: 0px !important;
            }
        """,
        head="""
            <script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
            <script>
                window.dataLayer = window.dataLayer || [];
                function gtag() {dataLayer.push(arguments);}
                gtag('js', new Date());
                gtag('config', 'G-1FWSVCGZTG');
            </script>
        """,
    ) as demo:

        gr.Markdown(
            """
            # GenPercept: Diffusion Models Trained with Large Data Are Transferable Visual Models
            <p align="center">
            <a title="arXiv" href="https://arxiv.org/abs/2403.06090" target="_blank" rel="noopener noreferrer" 
                    style="display: inline-block;">
                <img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
            </a>
            <a title="Github" href="https://github.com/aim-uofa/GenPercept" target="_blank" rel="noopener noreferrer" 
                    style="display: inline-block;">
                <img src="https://img.shields.io/github/stars/aim-uofa/GenPercept?label=GitHub%20%E2%98%85&logo=github&color=C8C" 
                        alt="badge-github-stars">
            </a>
            </p>
            <p align="justify">
                GenPercept leverages the prior knowledge of stable diffusion models to estimate detailed visual perception results. 
                It achieve remarkable transferable performance on fundamental vision perception tasks using a moderate amount of target data 
                (even synthetic data only). Compared to previous methods, our inference process only requires one step and therefore runs faster.
            </p>
        """
        )

        with gr.Tabs(elem_classes=["tabs"]):
            with gr.Tab("Depth"):
                with gr.Row():
                    with gr.Column():
                        depth_image_input = gr.Image(
                            label="Input Image",
                            type="filepath",
                            # type="pil",
                        )
                        with gr.Row():
                            depth_image_submit_btn = gr.Button(
                                value="Estimate Depth", variant="primary"
                            )
                            depth_image_reset_btn = gr.Button(value="Reset")
                        with gr.Accordion("Advanced options", open=False):
                            image_processing_res = gr.Radio(
                                [
                                    ("Native", 0),
                                    ("Recommended", 768),
                                ],
                                label="Processing resolution",
                                value=default_image_processing_res,
                            )
                    with gr.Column():
                        depth_image_output_slider = ImageSlider(
                            label="Predicted depth of gray / color (red-near, blue-far)",
                            type="filepath",
                            show_download_button=True,
                            show_share_button=True,
                            interactive=False,
                            elem_classes="slider",
                            position=0.25,
                        )
                        depth_image_output_files = gr.Files(
                            label="Depth outputs",
                            elem_id="download",
                            interactive=False,
                        )

                filenames = []
                filenames.extend(["depth_anime_%d.jpg" %(i+1) for i in range(7)])
                filenames.extend(["depth_line_%d.jpg" %(i+1) for i in range(6)])
                filenames.extend(["depth_real_%d.jpg" %(i+1) for i in range(24)])

                example_folder = os.path.join(os.path.dirname(__file__), "./images")
                Examples(
                    fn=process_pipe_depth,
                    examples=[
                        os.path.join(example_folder, name)
                        for name in filenames
                    ],
                    inputs=[depth_image_input],
                    outputs=[depth_image_output_slider, depth_image_output_files],
                    cache_examples=False,
                    # directory_name="examples_depth",
                    # cache_examples=False,
                )
            
            with gr.Tab("Normal"):
                with gr.Row():
                    with gr.Column():
                        normal_image_input = gr.Image(
                            label="Input Image",
                            type="filepath",
                        )
                        with gr.Row():
                            normal_image_submit_btn = gr.Button(
                                value="Estimate Normal", variant="primary"
                            )
                            normal_image_reset_btn = gr.Button(value="Reset")
                        with gr.Accordion("Advanced options", open=False):
                            image_processing_res = gr.Radio(
                                [
                                    ("Native", 0),
                                    ("Recommended", 768),
                                ],
                                label="Processing resolution",
                                value=default_image_processing_res,
                            )
                    with gr.Column():
                        # normal_image_output_slider = ImageSlider(
                        #     label="Predicted surface normal",
                        #     type="filepath",
                        #     show_download_button=True,
                        #     show_share_button=True,
                        #     interactive=False,
                        #     elem_classes="slider",
                        #     position=0.25,
                        # )
                        normal_image_output = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[1], height='auto')
                        normal_image_output_files = gr.Files(
                            label="Normal outputs",
                            elem_id="download",
                            interactive=False,
                        )

                filenames = ['normal_1.jpg','normal_10.jpg']
                # filenames.extend(["normal_%d.jpg" %(i+1) for i in range(10)])
                example_folder = "images"
                # print('line 337', __file__)
                # example_folder = os.path.join(os.path.dirname(__file__), "images")
                
                Examples(
                    fn=process_pipe_normal,
                    examples=[
                        os.path.join(example_folder, name)
                        for name in filenames
                    ],
                    inputs=[normal_image_input],
                    outputs=[normal_image_output, normal_image_output_files],
                    cache_examples=True,
                    # directory_name="examples_normal",
                    directory_name="images_cache",
                    # cache_examples=False,
                )
            

            with gr.Tab("Dichotomous Segmentation"):
                with gr.Row():
                    with gr.Column():
                        dis_image_input = gr.Image(
                            label="Input Image",
                            type="filepath",
                        )
                        with gr.Row():
                            dis_image_submit_btn = gr.Button(
                                value="Estimate Dichotomous Segmentation.", variant="primary"
                            )
                            dis_image_reset_btn = gr.Button(value="Reset")
                        with gr.Accordion("Advanced options", open=False):
                            image_processing_res = gr.Radio(
                                [
                                    ("Native", 0),
                                    ("Recommended", 768),
                                ],
                                label="Processing resolution",
                                value=default_image_processing_res,
                            )
                    with gr.Column():
                        # dis_image_output_slider = ImageSlider(
                        #     label="Predicted dichotomous image segmentation",
                        #     type="filepath",
                        #     show_download_button=True,
                        #     show_share_button=True,
                        #     interactive=False,
                        #     elem_classes="slider",
                        #     position=0.25,
                        # )
                        dis_image_output = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[1], height='auto')
                        dis_image_output_files = gr.Files(
                            label="DIS outputs",
                            elem_id="download",
                            interactive=False,
                        )

                filenames = []
                filenames.extend(["dis_%d.jpg" %(i+1) for i in range(10)])
                example_folder = "images"
                print('line 396', __file__)
                # example_folder = os.path.join(os.path.dirname(__file__), "images")
                # print(example_folder)
                Examples(
                    fn=process_pipe_dis,
                    examples=[
                        os.path.join(example_folder, name)
                        for name in filenames
                    ],
                    inputs=[dis_image_input],
                    outputs=[dis_image_output, dis_image_output_files],
                    cache_examples=True,
                    directory_name="images_cache",
                    # cache_examples=False,
                )


        ### Image tab
        depth_image_submit_btn.click(
            fn=process_image_check,
            inputs=depth_image_input,
            outputs=None,
            preprocess=False,
            queue=False,
        ).success(
            fn=process_pipe_depth,
            inputs=[
                depth_image_input,
                image_processing_res,
            ],
            outputs=[depth_image_output_slider, depth_image_output_files],
            concurrency_limit=1,
        )

        depth_image_reset_btn.click(
            fn=lambda: (
                None,
                None,
                None,
                default_image_processing_res,
            ),
            inputs=[],
            outputs=[
                depth_image_input,
                depth_image_output_slider,
                depth_image_output_files,
                image_processing_res,
            ],
            queue=False,
        )
        
        normal_image_submit_btn.click(
            fn=process_image_check,
            inputs=normal_image_input,
            outputs=None,
            preprocess=False,
            queue=False,
        ).success(
            fn=process_pipe_normal,
            inputs=[
                normal_image_input,
                image_processing_res,
            ],
            outputs=[normal_image_output, normal_image_output_files],
            concurrency_limit=1,
        )

        normal_image_reset_btn.click(
            fn=lambda: (
                None,
                None,
                None,
                default_image_processing_res,
            ),
            inputs=[],
            outputs=[
                normal_image_input,
                normal_image_output,
                normal_image_output_files,
                image_processing_res,
            ],
            queue=False,
        )
        
        dis_image_submit_btn.click(
            fn=process_image_check,
            inputs=dis_image_input,
            outputs=None,
            preprocess=False,
            queue=False,
        ).success(
            fn=process_pipe_dis,
            inputs=[
                dis_image_input,
                image_processing_res,
            ],
            outputs=[dis_image_output, dis_image_output_files],
            concurrency_limit=1,
        )

        dis_image_reset_btn.click(
            fn=lambda: (
                None,
                None,
                None,
                default_image_processing_res,
            ),
            inputs=[],
            outputs=[
                dis_image_input,
                dis_image_output,
                dis_image_output_files,
                image_processing_res,
            ],
            queue=False,
        )

        ### Server launch

        demo.queue(
            api_open=False,
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
        )


def main():
    os.system("pip freeze")

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    dtype = torch.float16
    
    vae = AutoencoderKL.from_pretrained("guangkaixu/GenPercept", subfolder='vae').to(dtype)
    unet_depth_v1 = UNet2DConditionModel.from_pretrained('guangkaixu/genpercept-depth', subfolder="unet").to(dtype)
    unet_normal_v1 = UNet2DConditionModel.from_pretrained('guangkaixu/GenPercept', subfolder="unet_normal_v1").to(dtype)
    unet_dis_v1 = UNet2DConditionModel.from_pretrained('guangkaixu/GenPercept', subfolder="unet_dis_v1").to(dtype)
    
    empty_text_embed = torch.from_numpy(np.load("./empty_text_embed.npy")).to(device, dtype)[None] # [1, 77, 1024]
    
    pipe_depth = GenPerceptPipeline(vae=vae,
                                    unet=unet_depth_v1,
                                    empty_text_embed=empty_text_embed)
    pipe_normal = GenPerceptPipeline(vae=vae,
                                     unet=unet_normal_v1,
                                     empty_text_embed=empty_text_embed)
    pipe_dis = GenPerceptPipeline(vae=vae,
                                  unet=unet_dis_v1,
                                  empty_text_embed=empty_text_embed)
    try:
        import xformers
        pipe_depth.enable_xformers_memory_efficient_attention()
        pipe_normal.enable_xformers_memory_efficient_attention()
        pipe_dis.enable_xformers_memory_efficient_attention()
    except:
        pass  # run without xformers

    pipe_depth = pipe_depth.to(device)
    pipe_normal = pipe_normal.to(device)
    pipe_dis = pipe_dis.to(device)
    
    run_demo_server(pipe_depth, pipe_normal, pipe_dis)


if __name__ == "__main__":
    main()