Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,287 Bytes
562fd4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# Copyright 2024 Guangkai Xu, Zhejiang University. All rights reserved.
#
# Licensed under the CC0-1.0 license;
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://github.com/aim-uofa/GenPercept/blob/main/LICENSE
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# This code is based on Marigold and diffusers codebases
# https://github.com/prs-eth/marigold
# https://github.com/huggingface/diffusers
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/aim-uofa/GenPercept#%EF%B8%8F-citation
# More information about the method can be found at https://github.com/aim-uofa/GenPercept
# --------------------------------------------------------------------------
from __future__ import annotations
import functools
import os
import tempfile
import warnings
import gradio as gr
import numpy as np
import spaces
import torch as torch
from PIL import Image
from gradio_imageslider import ImageSlider
from gradio_patches.examples import Examples
from pipeline_genpercept import GenPerceptPipeline
warnings.filterwarnings(
"ignore", message=".*LoginButton created outside of a Blocks context.*"
)
default_image_processing_res = 768
default_image_reproducuble = True
def process_image_check(path_input):
if path_input is None:
raise gr.Error(
"Missing image in the first pane: upload a file or use one from the gallery below."
)
def process_image(
pipe,
path_input,
processing_res=default_image_processing_res,
):
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
print(f"Processing image {name_base}{name_ext}")
path_output_dir = tempfile.mkdtemp()
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png")
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")
input_image = Image.open(path_input)
pipe_out = pipe(
input_image,
processing_res=processing_res,
batch_size=1 if processing_res == 0 else 0,
show_progress_bar=False,
)
depth_pred = pipe_out.depth_np
depth_colored = pipe_out.depth_colored
depth_16bit = (depth_pred * 65535.0).astype(np.uint16)
np.save(path_out_fp32, depth_pred)
Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16")
depth_colored.save(path_out_vis)
return (
[path_out_16bit, path_out_vis],
[path_out_16bit, path_out_fp32, path_out_vis],
)
def run_demo_server(pipe):
process_pipe_image = spaces.GPU(functools.partial(process_image, pipe))
process_pipe_video = spaces.GPU(
functools.partial(process_video, pipe), duration=120
)
process_pipe_bas = spaces.GPU(functools.partial(process_bas, pipe))
gradio_theme = gr.themes.Default()
with gr.Blocks(
theme=gradio_theme,
title="GenPercept",
css="""
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
.tabs button.selected {
font-size: 20px !important;
color: crimson !important;
}
h1 {
text-align: center;
display: block;
}
h2 {
text-align: center;
display: block;
}
h3 {
text-align: center;
display: block;
}
.md_feedback li {
margin-bottom: 0px !important;
}
""",
head="""
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-1FWSVCGZTG');
</script>
""",
) as demo:
gr.Markdown(
"""
# GenPercept: Diffusion Models Trained with Large Data Are Transferable Visual Models
<p align="center">
<a title="arXiv" href="https://arxiv.org/abs/2403.06090" target="_blank" rel="noopener noreferrer"
style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/aim-uofa/GenPercept" target="_blank" rel="noopener noreferrer"
style="display: inline-block;">
<img src="https://img.shields.io/github/stars/aim-uofa/GenPercept?label=GitHub%20%E2%98%85&logo=github&color=C8C"
alt="badge-github-stars">
</a>
</p>
<p align="justify">
GenPercept leverages the prior knowledge of stable diffusion models to estimate detailed visual perception results.
It achieve remarkable transferable performance on fundamental vision perception tasks using a moderate amount of target data
(even synthetic data only). Compared to previous methods, our inference process only requires one step and therefore runs faster.
</p>
"""
)
with gr.Tabs(elem_classes=["tabs"]):
with gr.Tab("Depth Estimation"):
with gr.Row():
with gr.Column():
image_input = gr.Image(
label="Input Image",
type="filepath",
)
with gr.Row():
image_submit_btn = gr.Button(
value="Estimate Depth", variant="primary"
)
image_reset_btn = gr.Button(value="Reset")
with gr.Accordion("Advanced options", open=False):
image_processing_res = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=default_image_processing_res,
)
with gr.Column():
image_output_slider = ImageSlider(
label="Predicted depth of gray / color (red-near, blue-far)",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
image_output_files = gr.Files(
label="Depth outputs",
elem_id="download",
interactive=False,
)
filenames = []
filenames.extend(["anime_%d.jpg" %i+1 for i in range(7)])
filenames.extend(["line_%d.jpg" %i+1 for i in range(6)])
filenames.extend(["real_%d.jpg" %i+1 for i in range(24)])
Examples(
fn=process_pipe_image,
examples=[
os.path.join("images", "depth", name)
for name in filenames
],
inputs=[image_input],
outputs=[image_output_slider, image_output_files],
cache_examples=True,
directory_name="examples_image",
)
### Image tab
image_submit_btn.click(
fn=process_image_check,
inputs=image_input,
outputs=None,
preprocess=False,
queue=False,
).success(
fn=process_pipe_image,
inputs=[
image_input,
image_processing_res,
],
outputs=[image_output_slider, image_output_files],
concurrency_limit=1,
)
image_reset_btn.click(
fn=lambda: (
None,
None,
None,
default_image_processing_res,
),
inputs=[],
outputs=[
image_input,
image_output_slider,
image_output_files,
image_processing_res,
],
queue=False,
)
### Server launch
demo.queue(
api_open=False,
).launch(
server_name="0.0.0.0",
server_port=7860,
)
def main():
os.system("pip freeze")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vae = AutoencoderKL.from_pretrained("./", subfolder='vae')
unet = UNet2DConditionModel.from_pretrained('./', subfolder="unet")
empty_text_embed = torch.from_numpy(np.load("./empty_text_embed.npy")).to(device, dtype)[None] # [1, 77, 1024]
pipe = GenPerceptPipeline(vae=vae,
unet=unet,
empty_text_embed=empty_text_embed)
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
pipe = pipe.to(device)
run_demo_server(pipe)
if __name__ == "__main__":
main()
|