Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,767 Bytes
562fd4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# --------------------------------------------------------
# Diffusion Models Trained with Large Data Are Transferable Visual Models (https://arxiv.org/abs/2403.06090)
# Github source: https://github.com/aim-uofa/GenPercept
# Copyright (c) 2024 Zhejiang University
# Licensed under The CC0 1.0 License [see LICENSE for details]
# By Guangkai Xu
# Based on Marigold, diffusers codebases
# https://github.com/prs-eth/marigold
# https://github.com/huggingface/diffusers
# --------------------------------------------------------
import torch
import numpy as np
import torch.nn.functional as F
import matplotlib.pyplot as plt
from tqdm.auto import tqdm
from PIL import Image
from typing import List, Dict, Union
from torch.utils.data import DataLoader, TensorDataset
from diffusers import (
DiffusionPipeline,
UNet2DConditionModel,
AutoencoderKL,
)
from diffusers.utils import BaseOutput
from .util.image_util import chw2hwc, colorize_depth_maps, resize_max_res, norm_to_rgb, resize_res
from .util.batchsize import find_batch_size
class GenPerceptOutput(BaseOutput):
pred_np: np.ndarray
pred_colored: Image.Image
class GenPerceptPipeline(DiffusionPipeline):
vae_scale_factor = 0.18215
task_infos = {
'depth': dict(task_channel_num=1, interpolate='bilinear', ),
'seg': dict(task_channel_num=3, interpolate='nearest', ),
'sr': dict(task_channel_num=3, interpolate='nearest', ),
'normal': dict(task_channel_num=3, interpolate='bilinear', ),
}
def __init__(
self,
unet: UNet2DConditionModel,
vae: AutoencoderKL,
customized_head=None,
empty_text_embed=None,
):
super().__init__()
self.empty_text_embed = empty_text_embed
# register
register_dict = dict(
unet=unet,
vae=vae,
customized_head=customized_head,
)
self.register_modules(**register_dict)
@torch.no_grad()
def __call__(
self,
input_image: Union[Image.Image, torch.Tensor],
mode: str = 'depth',
resize_hard = False,
processing_res: int = 768,
match_input_res: bool = True,
batch_size: int = 0,
color_map: str = "Spectral",
show_progress_bar: bool = True,
) -> GenPerceptOutput:
"""
Function invoked when calling the pipeline.
Args:
input_image (Image):
Input RGB (or gray-scale) image.
processing_res (int, optional):
Maximum resolution of processing.
If set to 0: will not resize at all.
Defaults to 768.
match_input_res (bool, optional):
Resize depth prediction to match input resolution.
Only valid if `limit_input_res` is not None.
Defaults to True.
batch_size (int, optional):
Inference batch size.
If set to 0, the script will automatically decide the proper batch size.
Defaults to 0.
show_progress_bar (bool, optional):
Display a progress bar of diffusion denoising.
Defaults to True.
color_map (str, optional):
Colormap used to colorize the depth map.
Defaults to "Spectral".
Returns:
`GenPerceptOutput`
"""
device = self.device
task_channel_num = self.task_infos[mode]['task_channel_num']
if not match_input_res:
assert (
processing_res is not None
), "Value error: `resize_output_back` is only valid with "
assert processing_res >= 0
# ----------------- Image Preprocess -----------------
if type(input_image) == torch.Tensor: # [B, 3, H, W]
rgb_norm = input_image.to(device)
input_size = input_image.shape[2:]
bs_imgs = rgb_norm.shape[0]
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
rgb_norm = rgb_norm.to(self.dtype)
else:
# if len(rgb_paths) > 0 and 'kitti' in rgb_paths[0]:
# # kb crop
# height = input_image.size[1]
# width = input_image.size[0]
# top_margin = int(height - 352)
# left_margin = int((width - 1216) / 2)
# input_image = input_image.crop((left_margin, top_margin, left_margin + 1216, top_margin + 352))
# TODO: check the kitti evaluation resolution here.
input_size = (input_image.size[1], input_image.size[0])
# Resize image
if processing_res > 0:
if resize_hard:
input_image = resize_res(
input_image, max_edge_resolution=processing_res
)
else:
input_image = resize_max_res(
input_image, max_edge_resolution=processing_res
)
input_image = input_image.convert("RGB")
image = np.asarray(input_image)
# Normalize rgb values
rgb = np.transpose(image, (2, 0, 1)) # [H, W, rgb] -> [rgb, H, W]
rgb_norm = rgb / 255.0 * 2.0 - 1.0
rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
rgb_norm = rgb_norm[None].to(device)
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
bs_imgs = 1
# ----------------- Predicting depth -----------------
single_rgb_dataset = TensorDataset(rgb_norm)
if batch_size > 0:
_bs = batch_size
else:
_bs = find_batch_size(
ensemble_size=1,
input_res=max(rgb_norm.shape[1:]),
dtype=self.dtype,
)
single_rgb_loader = DataLoader(
single_rgb_dataset, batch_size=_bs, shuffle=False
)
# Predict depth maps (batched)
pred_list = []
if show_progress_bar:
iterable = tqdm(
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
)
else:
iterable = single_rgb_loader
for batch in iterable:
(batched_img, ) = batch
pred = self.single_infer(
rgb_in=batched_img,
mode=mode,
)
pred_list.append(pred.detach().clone())
preds = torch.concat(pred_list, axis=0).squeeze() # [bs_imgs, task_channel_num, H, W]
preds = preds.view(bs_imgs, task_channel_num, preds.shape[-2], preds.shape[-1])
if match_input_res:
preds = F.interpolate(preds, input_size, mode=self.task_infos[mode]['interpolate'])
# ----------------- Post processing -----------------
if mode == 'depth':
if len(preds.shape) == 4:
preds = preds[:, 0] # [bs_imgs, H, W]
# Scale prediction to [0, 1]
min_d = preds.view(bs_imgs, -1).min(dim=1)[0]
max_d = preds.view(bs_imgs, -1).max(dim=1)[0]
preds = (preds - min_d[:, None, None]) / (max_d[:, None, None] - min_d[:, None, None])
preds = preds.cpu().numpy().astype(np.float32)
# Colorize
pred_colored_img_list = []
for i in range(bs_imgs):
pred_colored_chw = colorize_depth_maps(
preds[i], 0, 1, cmap=color_map
).squeeze() # [3, H, W], value in (0, 1)
pred_colored_chw = (pred_colored_chw * 255).astype(np.uint8)
pred_colored_hwc = chw2hwc(pred_colored_chw)
pred_colored_img = Image.fromarray(pred_colored_hwc)
pred_colored_img_list.append(pred_colored_img)
return GenPerceptOutput(
pred_np=np.squeeze(preds),
pred_colored=pred_colored_img_list[0] if len(pred_colored_img_list) == 1 else pred_colored_img_list,
)
elif mode == 'seg' or mode == 'sr':
if not self.customized_head:
# shift to [0, 1]
preds = (preds + 1.0) / 2.0
# shift to [0, 255]
preds = preds * 255
# Clip output range
preds = preds.clip(0, 255).cpu().numpy().astype(np.uint8)
else:
raise NotImplementedError
pred_colored_img_list = []
for i in range(preds.shape[0]):
pred_colored_hwc = chw2hwc(preds[i])
pred_colored_img = Image.fromarray(pred_colored_hwc)
pred_colored_img_list.append(pred_colored_img)
return GenPerceptOutput(
pred_np=np.squeeze(preds),
pred_colored=pred_colored_img_list[0] if len(pred_colored_img_list) == 1 else pred_colored_img_list,
)
elif mode == 'normal':
if not self.customized_head:
preds = preds.clip(-1, 1).cpu().numpy() # [-1, 1]
else:
raise NotImplementedError
pred_colored_img_list = []
for i in range(preds.shape[0]):
pred_colored_chw = norm_to_rgb(preds[i])
pred_colored_hwc = chw2hwc(pred_colored_chw)
normal_colored_img_i = Image.fromarray(pred_colored_hwc)
pred_colored_img_list.append(normal_colored_img_i)
return GenPerceptOutput(
pred_np=np.squeeze(preds),
pred_colored=pred_colored_img_list[0] if len(pred_colored_img_list) == 1 else pred_colored_img_list,
)
else:
raise NotImplementedError
@torch.no_grad()
def single_infer(
self,
rgb_in: torch.Tensor,
mode: str = 'depth',
) -> torch.Tensor:
"""
Perform an individual depth prediction without ensembling.
Args:
rgb_in (torch.Tensor):
Input RGB image.
num_inference_steps (int):
Number of diffusion denoising steps (DDIM) during inference.
show_pbar (bool):
Display a progress bar of diffusion denoising.
Returns:
torch.Tensor: Predicted depth map.
"""
device = rgb_in.device
bs_imgs = rgb_in.shape[0]
timesteps = torch.tensor([1]).long().repeat(bs_imgs).to(device)
# Encode image
rgb_latent = self.encode_rgb(rgb_in)
batch_embed = self.empty_text_embed
batch_embed = batch_embed.repeat((rgb_latent.shape[0], 1, 1)).to(device) # [bs_imgs, 77, 1024]
# Forward!
if self.customized_head:
unet_features = self.unet(rgb_latent, timesteps, encoder_hidden_states=batch_embed, return_feature_only=True)[0][::-1]
pred = self.customized_head(unet_features)
else:
unet_output = self.unet(
rgb_latent, timesteps, encoder_hidden_states=batch_embed
) # [bs_imgs, 4, h, w]
unet_pred = unet_output.sample
pred_latent = - unet_pred
pred_latent.to(device)
pred = self.decode_pred(pred_latent)
if mode == 'depth':
# mean of output channels
pred = pred.mean(dim=1, keepdim=True)
# clip prediction
pred = torch.clip(pred, -1.0, 1.0)
return pred
def encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor:
"""
Encode RGB image into latent.
Args:
rgb_in (torch.Tensor):
Input RGB image to be encoded.
Returns:
torch.Tensor: Image latent
"""
try:
# encode
h_temp = self.vae.encoder(rgb_in)
moments = self.vae.quant_conv(h_temp)
except:
# encode
h_temp = self.vae.encoder(rgb_in.float())
moments = self.vae.quant_conv(h_temp.float())
mean, logvar = torch.chunk(moments, 2, dim=1)
# scale latent
rgb_latent = mean * self.vae_scale_factor
return rgb_latent
def decode_pred(self, pred_latent: torch.Tensor) -> torch.Tensor:
"""
Decode pred latent into pred label.
Args:
pred_latent (torch.Tensor):
prediction latent to be decoded.
Returns:
torch.Tensor: Decoded prediction label.
"""
# scale latent
pred_latent = pred_latent / self.vae_scale_factor
# decode
z = self.vae.post_quant_conv(pred_latent)
pred = self.vae.decoder(z)
return pred
|