Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,151 Bytes
562fd4c 939e89f 562fd4c 704db5a 562fd4c 17777da 562fd4c 704db5a 562fd4c a02b691 562fd4c a123370 562fd4c 2dc1d37 a02b691 704db5a a02b691 704db5a 3c16620 704db5a a02b691 704db5a 562fd4c 07f2831 3c16620 562fd4c bf2146f 704db5a 562fd4c cb4d057 562fd4c bfac6cd 416ea46 bfac6cd f00f91b 4191566 3c16620 bfac6cd f00f91b 75c72c3 f00f91b bfac6cd 4d1a7d2 900612e d9bd77d bfac6cd a9d6e82 3c16620 a9d6e82 6b80964 1ccdae3 336b7b8 1ccdae3 d9bd77d a9d6e82 336b7b8 a9d6e82 3c16620 6b80964 a9d6e82 336b7b8 6b80964 a9d6e82 91c383d a9d6e82 3c16620 a9d6e82 1ccdae3 6b80964 1ccdae3 6e65e24 a9d6e82 75c72c3 a9d6e82 3c16620 6b80964 336b7b8 6b80964 a9d6e82 2dc1d37 562fd4c bfac6cd 093d444 bfac6cd 093d444 bfac6cd 093d444 bfac6cd 093d444 bfac6cd 093d444 6b95e7c bfac6cd 093d444 bfac6cd 093d444 5463b93 a9d6e82 3c16620 a9d6e82 3c16620 a9d6e82 bfac6cd a9d6e82 3c16620 a9d6e82 3c16620 a9d6e82 562fd4c eb1d34b 12daec9 602bf69 b8af358 562fd4c bf2146f 562fd4c bf2146f 562fd4c bf2146f 562fd4c 91c383d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
# Copyright 2024 Guangkai Xu, Zhejiang University. All rights reserved.
#
# Licensed under the CC0-1.0 license;
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://github.com/aim-uofa/GenPercept/blob/main/LICENSE
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# This code is based on Marigold and diffusers codebases
# https://github.com/prs-eth/marigold
# https://github.com/huggingface/diffusers
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/aim-uofa/GenPercept#%EF%B8%8F-citation
# More information about the method can be found at https://github.com/aim-uofa/GenPercept
# --------------------------------------------------------------------------
from __future__ import annotations
import functools
import os
import tempfile
import warnings
import gradio as gr
import numpy as np
import spaces
import torch as torch
from PIL import Image
from gradio_imageslider import ImageSlider
from gradio_patches.examples import Examples
from pipeline_genpercept import GenPerceptPipeline
from diffusers import (
DiffusionPipeline,
UNet2DConditionModel,
AutoencoderKL,
)
warnings.filterwarnings(
"ignore", message=".*LoginButton created outside of a Blocks context.*"
)
default_image_processing_res = 768
default_image_reproducuble = True
def process_image_check(path_input):
if path_input is None:
raise gr.Error(
"Missing image in the first pane: upload a file or use one from the gallery below."
)
def process_depth(
pipe,
path_input,
processing_res=default_image_processing_res,
):
print('line 65', path_input)
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
print(f"Processing image {name_base}{name_ext}")
path_output_dir = tempfile.mkdtemp()
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")
input_image = Image.open(path_input)
pipe_out = pipe(
input_image,
processing_res=processing_res,
batch_size=1 if processing_res == 0 else 0,
show_progress_bar=False,
mode='depth',
)
depth_pred = pipe_out.pred_np
depth_colored = pipe_out.pred_colored
np.save(path_out_fp32, depth_pred)
depth_colored.save(path_out_vis)
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png")
depth_16bit = (depth_pred * 65535.0).astype(np.uint16)
Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16")
return (
[path_out_16bit, path_out_vis],
[path_out_16bit, path_out_fp32, path_out_vis],
)
def process_normal(
pipe,
path_input,
processing_res=default_image_processing_res,
):
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
print(f"Processing image {name_base}{name_ext}")
path_output_dir = tempfile.mkdtemp()
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_normal_fp32.npy")
path_out_vis = os.path.join(path_output_dir, f"{name_base}_normal_colored.png")
input_image = Image.open(path_input)
pipe_out = pipe(
input_image,
processing_res=processing_res,
batch_size=1 if processing_res == 0 else 0,
show_progress_bar=False,
mode='normal',
)
depth_pred = pipe_out.pred_np
depth_colored = pipe_out.pred_colored
np.save(path_out_fp32, depth_pred)
depth_colored.save(path_out_vis)
return (
[path_out_vis],
[path_out_fp32, path_out_vis],
)
def process_dis(
pipe,
path_input,
processing_res=default_image_processing_res,
):
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
print(f"Processing image {name_base}{name_ext}")
path_output_dir = tempfile.mkdtemp()
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_dis_fp32.npy")
path_out_vis = os.path.join(path_output_dir, f"{name_base}_dis_colored.png")
input_image = Image.open(path_input)
pipe_out = pipe(
input_image,
processing_res=processing_res,
batch_size=1 if processing_res == 0 else 0,
show_progress_bar=False,
mode='seg',
)
depth_pred = pipe_out.pred_np
depth_colored = pipe_out.pred_colored
np.save(path_out_fp32, depth_pred)
depth_colored.save(path_out_vis)
return (
[path_out_vis],
[path_out_fp32, path_out_vis],
)
def run_demo_server(pipe_depth, pipe_normal, pipe_dis):
process_pipe_depth = spaces.GPU(functools.partial(process_depth, pipe_depth))
process_pipe_normal = spaces.GPU(functools.partial(process_normal, pipe_normal))
process_pipe_dis = spaces.GPU(functools.partial(process_dis, pipe_dis))
gradio_theme = gr.themes.Default()
with gr.Blocks(
theme=gradio_theme,
title="GenPercept",
css="""
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
.tabs button.selected {
font-size: 20px !important;
color: crimson !important;
}
h1 {
text-align: center;
display: block;
}
h2 {
text-align: center;
display: block;
}
h3 {
text-align: center;
display: block;
}
.md_feedback li {
margin-bottom: 0px !important;
}
""",
head="""
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-1FWSVCGZTG');
</script>
""",
) as demo:
gr.Markdown(
"""
# GenPercept: Diffusion Models Trained with Large Data Are Transferable Visual Models
<p align="center">
<a title="arXiv" href="https://arxiv.org/abs/2403.06090" target="_blank" rel="noopener noreferrer"
style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/aim-uofa/GenPercept" target="_blank" rel="noopener noreferrer"
style="display: inline-block;">
<img src="https://img.shields.io/github/stars/aim-uofa/GenPercept?label=GitHub%20%E2%98%85&logo=github&color=C8C"
alt="badge-github-stars">
</a>
</p>
<p align="justify">
GenPercept is a one-step image perception generalist, which leverages the pretrained prior from stable diffusion models to estimate depth/surface normal/matting/segmentation with impressive details.
It achieves extremely fast inference speed and remarkable generalization capability on these fundamental vision perception tasks.
</p>
"""
)
with gr.Tabs(elem_classes=["tabs"]):
with gr.Tab("Depth"):
with gr.Row():
with gr.Column():
depth_image_input = gr.Image(
label="Input Image",
type="filepath",
# type="pil",
)
with gr.Row():
depth_image_submit_btn = gr.Button(
value="Estimate Depth", variant="primary"
)
depth_image_reset_btn = gr.Button(value="Reset")
with gr.Accordion("Advanced options", open=False):
image_processing_res = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=default_image_processing_res,
)
with gr.Column():
depth_image_output_slider = ImageSlider(
label="Predicted depth of gray / color (red-near, blue-far)",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
depth_image_output_files = gr.Files(
label="Depth outputs",
elem_id="download",
interactive=False,
)
filenames = []
filenames.extend(["depth_anime_%d.jpg" %(i+1) for i in range(7)])
filenames.extend(["depth_line_%d.jpg" %(i+1) for i in range(6)])
filenames.extend(["depth_real_%d.jpg" %(i+1) for i in range(24)])
example_folder = os.path.join(os.path.dirname(__file__), "./images")
Examples(
fn=process_pipe_depth,
examples=[
os.path.join(example_folder, name)
for name in filenames
],
inputs=[depth_image_input],
outputs=[depth_image_output_slider, depth_image_output_files],
cache_examples=False,
# directory_name="examples_depth",
# cache_examples=False,
)
with gr.Tab("Normal"):
with gr.Row():
with gr.Column():
normal_image_input = gr.Image(
label="Input Image",
type="filepath",
)
with gr.Row():
normal_image_submit_btn = gr.Button(
value="Estimate Normal", variant="primary"
)
normal_image_reset_btn = gr.Button(value="Reset")
with gr.Accordion("Advanced options", open=False):
image_processing_res = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=default_image_processing_res,
)
with gr.Column():
# normal_image_output_slider = ImageSlider(
# label="Predicted surface normal",
# type="filepath",
# show_download_button=True,
# show_share_button=True,
# interactive=False,
# elem_classes="slider",
# position=0.25,
# )
normal_image_output = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[1], height='auto')
normal_image_output_files = gr.Files(
label="Normal outputs",
elem_id="download",
interactive=False,
)
filenames = []
filenames.extend(["normal_%d.jpg" %(i+1) for i in range(10)])
# example_folder = "images"
# print(os.path.join(example_folder, '1.jpg'))
# example_folder = os.path.join(os.path.dirname(__file__), "images")
example_folder = os.path.join(os.path.dirname(__file__), "./images")
Examples(
fn=process_pipe_normal,
examples=[
os.path.join(example_folder, name)
for name in filenames
],
inputs=[normal_image_input],
outputs=[normal_image_output, normal_image_output_files],
# cache_examples=True,
# directory_name="examples_normal",
directory_name="images_cache",
cache_examples=False,
)
with gr.Tab("Dichotomous Segmentation"):
with gr.Row():
with gr.Column():
dis_image_input = gr.Image(
label="Input Image",
type="filepath",
)
with gr.Row():
dis_image_submit_btn = gr.Button(
value="Estimate Dichotomous Segmentation.", variant="primary"
)
dis_image_reset_btn = gr.Button(value="Reset")
with gr.Accordion("Advanced options", open=False):
image_processing_res = gr.Radio(
[
("Native", 0),
("Recommended", 768),
],
label="Processing resolution",
value=default_image_processing_res,
)
with gr.Column():
# dis_image_output_slider = ImageSlider(
# label="Predicted dichotomous image segmentation",
# type="filepath",
# show_download_button=True,
# show_share_button=True,
# interactive=False,
# elem_classes="slider",
# position=0.25,
# )
dis_image_output = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[1], height='auto')
dis_image_output_files = gr.Files(
label="DIS outputs",
elem_id="download",
interactive=False,
)
filenames = []
filenames.extend(["dis_%d.jpg" %(i+1) for i in range(10)])
# example_folder = "images"
# print('line 396', __file__)
example_folder = os.path.join(os.path.dirname(__file__), "images")
# print(example_folder)
Examples(
fn=process_pipe_dis,
examples=[
os.path.join(example_folder, name)
for name in filenames
],
inputs=[dis_image_input],
outputs=[dis_image_output, dis_image_output_files],
# cache_examples=True,
directory_name="images_cache",
cache_examples=False,
)
### Image tab
depth_image_submit_btn.click(
fn=process_image_check,
inputs=depth_image_input,
outputs=None,
preprocess=False,
queue=False,
).success(
fn=process_pipe_depth,
inputs=[
depth_image_input,
image_processing_res,
],
outputs=[depth_image_output_slider, depth_image_output_files],
concurrency_limit=1,
)
depth_image_reset_btn.click(
fn=lambda: (
None,
None,
None,
default_image_processing_res,
),
inputs=[],
outputs=[
depth_image_input,
depth_image_output_slider,
depth_image_output_files,
image_processing_res,
],
queue=False,
)
normal_image_submit_btn.click(
fn=process_image_check,
inputs=normal_image_input,
outputs=None,
preprocess=False,
queue=False,
).success(
fn=process_pipe_normal,
inputs=[
normal_image_input,
image_processing_res,
],
outputs=[normal_image_output, normal_image_output_files],
concurrency_limit=1,
)
normal_image_reset_btn.click(
fn=lambda: (
None,
None,
None,
default_image_processing_res,
),
inputs=[],
outputs=[
normal_image_input,
normal_image_output,
normal_image_output_files,
image_processing_res,
],
queue=False,
)
dis_image_submit_btn.click(
fn=process_image_check,
inputs=dis_image_input,
outputs=None,
preprocess=False,
queue=False,
).success(
fn=process_pipe_dis,
inputs=[
dis_image_input,
image_processing_res,
],
outputs=[dis_image_output, dis_image_output_files],
concurrency_limit=1,
)
dis_image_reset_btn.click(
fn=lambda: (
None,
None,
None,
default_image_processing_res,
),
inputs=[],
outputs=[
dis_image_input,
dis_image_output,
dis_image_output_files,
image_processing_res,
],
queue=False,
)
### Server launch
demo.queue(
api_open=False,
).launch(
server_name="0.0.0.0",
server_port=7860,
)
def main():
os.system("pip freeze")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16
vae = AutoencoderKL.from_pretrained("guangkaixu/GenPercept", subfolder='vae').to(dtype)
unet_depth_v1 = UNet2DConditionModel.from_pretrained(
'guangkaixu/genpercept-depth',
subfolder="unet",
use_safetensors=True).to(dtype)
unet_normal_v1 = UNet2DConditionModel.from_pretrained('guangkaixu/GenPercept', subfolder="unet_normal_v1", use_safetensors=True).to(dtype)
unet_dis_v1 = UNet2DConditionModel.from_pretrained('guangkaixu/GenPercept', subfolder="unet_dis_v1", use_safetensors=True).to(dtype)
empty_text_embed = torch.from_numpy(np.load("./empty_text_embed.npy")).to(device, dtype)[None] # [1, 77, 1024]
pipe_depth = GenPerceptPipeline(vae=vae,
unet=unet_depth_v1,
empty_text_embed=empty_text_embed)
pipe_normal = GenPerceptPipeline(vae=vae,
unet=unet_normal_v1,
empty_text_embed=empty_text_embed)
pipe_dis = GenPerceptPipeline(vae=vae,
unet=unet_dis_v1,
empty_text_embed=empty_text_embed)
try:
import xformers
pipe_depth.enable_xformers_memory_efficient_attention()
pipe_normal.enable_xformers_memory_efficient_attention()
pipe_dis.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
pipe_depth = pipe_depth.to(device)
pipe_normal = pipe_normal.to(device)
pipe_dis = pipe_dis.to(device)
run_demo_server(pipe_depth, pipe_normal, pipe_dis)
if __name__ == "__main__":
main() |