Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,736 Bytes
4d5065f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import matplotlib
import numpy as np
import torch
from PIL import Image
from torchvision import transforms
def norm_to_rgb(norm):
# norm: (3, H, W), range from [-1, 1]
norm_rgb = ((norm + 1) * 0.5) * 255
norm_rgb = np.clip(norm_rgb, a_min=0, a_max=255)
norm_rgb = norm_rgb.astype(np.uint8)
return norm_rgb
def colorize_depth_maps(
depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None
):
"""
Colorize depth maps.
"""
assert len(depth_map.shape) >= 2, "Invalid dimension"
if isinstance(depth_map, torch.Tensor):
depth = depth_map.detach().clone().squeeze().numpy()
elif isinstance(depth_map, np.ndarray):
depth = np.squeeze(depth_map.copy())
# reshape to [ (B,) H, W ]
if depth.ndim < 3:
depth = depth[np.newaxis, :, :]
# colorize
cm = matplotlib.colormaps[cmap]
depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1
img_colored_np = np.rollaxis(img_colored_np, 3, 1)
if valid_mask is not None:
if isinstance(depth_map, torch.Tensor):
valid_mask = valid_mask.detach().numpy()
valid_mask = np.squeeze(valid_mask) # [H, W] or [B, H, W]
if valid_mask.ndim < 3:
valid_mask = valid_mask[np.newaxis, np.newaxis, :, :]
else:
valid_mask = valid_mask[:, np.newaxis, :, :]
valid_mask = np.repeat(valid_mask, 3, axis=1)
img_colored_np[~valid_mask] = 0
if isinstance(depth_map, torch.Tensor):
img_colored = torch.from_numpy(img_colored_np).float()
elif isinstance(depth_map, np.ndarray):
img_colored = img_colored_np
return img_colored
def chw2hwc(chw):
assert 3 == len(chw.shape)
if isinstance(chw, torch.Tensor):
hwc = torch.permute(chw, (1, 2, 0))
elif isinstance(chw, np.ndarray):
hwc = np.moveaxis(chw, 0, -1)
return hwc
def resize_max_res(img: Image.Image, max_edge_resolution: int) -> Image.Image:
"""
Resize image to limit maximum edge length while keeping aspect ratio
Args:
img (Image.Image): Image to be resized
max_edge_resolution (int): Maximum edge length (px).
Returns:
Image.Image: Resized image.
"""
original_width, original_height = img.size
downscale_factor = min(
max_edge_resolution / original_width, max_edge_resolution / original_height
)
new_width = int(original_width * downscale_factor)
new_height = int(original_height * downscale_factor)
resized_img = img.resize((new_width, new_height))
return resized_img
def resize_max_res_integer_16(img: Image.Image, max_edge_resolution: int) -> Image.Image:
"""
Resize image to limit maximum edge length while keeping aspect ratio
Args:
img (Image.Image): Image to be resized
max_edge_resolution (int): Maximum edge length (px).
Returns:
Image.Image: Resized image.
"""
original_width, original_height = img.size
downscale_factor = min(
max_edge_resolution / original_width, max_edge_resolution / original_height
)
new_width = int(original_width * downscale_factor) // 16 * 16 # make sure it is integer multiples of 16, used for pixart
new_height = int(original_height * downscale_factor) // 16 * 16 # make sure it is integer multiples of 16, used for pixart
resized_img = img.resize((new_width, new_height))
return resized_img
def resize_res(img: Image.Image, max_edge_resolution: int) -> Image.Image:
"""
Resize image to limit maximum edge length while keeping aspect ratio
Args:
img (Image.Image): Image to be resized
max_edge_resolution (int): Maximum edge length (px).
Returns:
Image.Image: Resized image.
"""
resized_img = img.resize((max_edge_resolution, max_edge_resolution))
return resized_img
class ResizeLongestEdge:
def __init__(self, max_size, interpolation=transforms.InterpolationMode.BILINEAR):
self.max_size = max_size
self.interpolation = interpolation
def __call__(self, img):
scale = self.max_size / max(img.width, img.height)
new_size = (int(img.height * scale), int(img.width * scale))
return transforms.functional.resize(img, new_size, self.interpolation)
class ResizeShortestEdge:
def __init__(self, min_size, interpolation=transforms.InterpolationMode.BILINEAR):
self.min_size = min_size
self.interpolation = interpolation
def __call__(self, img):
scale = self.min_size / min(img.width, img.height)
new_size = (int(img.height * scale), int(img.width * scale))
return transforms.functional.resize(img, new_size, self.interpolation)
class ResizeHard:
def __init__(self, size, interpolation=transforms.InterpolationMode.BILINEAR):
self.size = size
self.interpolation = interpolation
def __call__(self, img):
new_size = (int(self.size), int(self.size))
return transforms.functional.resize(img, new_size, self.interpolation)
class ResizeLongestEdgeInteger:
def __init__(self, max_size, interpolation=transforms.InterpolationMode.BILINEAR, integer=16):
self.max_size = max_size
self.interpolation = interpolation
self.integer = integer
def __call__(self, img):
scale = self.max_size / max(img.width, img.height)
new_size_h = int(img.height * scale) // self.integer * self.integer
new_size_w = int(img.width * scale) // self.integer * self.integer
new_size = (new_size_h, new_size_w)
return transforms.functional.resize(img, new_size, self.interpolation) |