File size: 12,771 Bytes
562fd4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e487722
 
562fd4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8238271
562fd4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a123370
562fd4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# --------------------------------------------------------
# Diffusion Models Trained with Large Data Are Transferable Visual Models (https://arxiv.org/abs/2403.06090)
# Github source: https://github.com/aim-uofa/GenPercept
# Copyright (c) 2024 Zhejiang University
# Licensed under The CC0 1.0 License [see LICENSE for details]
# By Guangkai Xu
# Based on Marigold, diffusers codebases
# https://github.com/prs-eth/marigold
# https://github.com/huggingface/diffusers
# --------------------------------------------------------

import torch
import numpy as np
import torch.nn.functional as F
import matplotlib.pyplot as plt

from tqdm.auto import tqdm
from PIL import Image
from typing import List, Dict, Union
from torch.utils.data import DataLoader, TensorDataset

from diffusers import (
    DiffusionPipeline,
    UNet2DConditionModel,
    AutoencoderKL,
)
from diffusers.utils import BaseOutput

from util.image_util import chw2hwc, colorize_depth_maps, resize_max_res, norm_to_rgb, resize_res
from util.batchsize import find_batch_size

class GenPerceptOutput(BaseOutput):

    pred_np: np.ndarray
    pred_colored: Image.Image

class GenPerceptPipeline(DiffusionPipeline):

    vae_scale_factor = 0.18215
    task_infos = {
        'depth':    dict(task_channel_num=1, interpolate='bilinear', ),
        'seg':      dict(task_channel_num=3, interpolate='nearest', ),
        'sr':       dict(task_channel_num=3, interpolate='nearest', ),
        'normal':   dict(task_channel_num=3, interpolate='bilinear', ),
    }

    def __init__(
        self,
        unet: UNet2DConditionModel,
        vae: AutoencoderKL,
        customized_head=None,
        empty_text_embed=None,
    ):
        super().__init__()

        self.empty_text_embed = empty_text_embed

        # register
        register_dict = dict(
            unet=unet,
            vae=vae,
            customized_head=customized_head,
        )
        self.register_modules(**register_dict)
    
    @torch.no_grad()
    def __call__(
        self,
        input_image: Union[Image.Image, torch.Tensor],
        mode: str = 'depth',
        resize_hard = False,
        processing_res: int = 768,
        match_input_res: bool = False,
        batch_size: int = 0,
        color_map: str = "Spectral",
        show_progress_bar: bool = True,
    ) -> GenPerceptOutput:
        """
        Function invoked when calling the pipeline.

        Args:
            input_image (Image):
                Input RGB (or gray-scale) image.
            processing_res (int, optional):
                Maximum resolution of processing.
                If set to 0: will not resize at all.
                Defaults to 768.
            match_input_res (bool, optional):
                Resize depth prediction to match input resolution.
                Only valid if `limit_input_res` is not None.
                Defaults to True.
            batch_size (int, optional):
                Inference batch size.
                If set to 0, the script will automatically decide the proper batch size.
                Defaults to 0.
            show_progress_bar (bool, optional):
                Display a progress bar of diffusion denoising.
                Defaults to True.
            color_map (str, optional):
                Colormap used to colorize the depth map.
                Defaults to "Spectral".
        Returns:
            `GenPerceptOutput`
        """

        device = self.device

        task_channel_num = self.task_infos[mode]['task_channel_num']

        if not match_input_res:
            assert (
                processing_res is not None
            ), "Value error: `resize_output_back` is only valid with "
        assert processing_res >= 0

        # ----------------- Image Preprocess -----------------

        if type(input_image) == torch.Tensor: # [B, 3, H, W]            
            rgb_norm = input_image.to(device)
            input_size = input_image.shape[2:]
            bs_imgs = rgb_norm.shape[0]
            assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
            rgb_norm = rgb_norm.to(self.dtype)
        else:
            # if len(rgb_paths) > 0 and 'kitti' in rgb_paths[0]:
            #     # kb crop
            #     height = input_image.size[1]
            #     width = input_image.size[0]
            #     top_margin = int(height - 352)
            #     left_margin = int((width - 1216) / 2)
            #     input_image = input_image.crop((left_margin, top_margin, left_margin + 1216, top_margin + 352))

            # TODO: check the kitti evaluation resolution here.
            input_size = (input_image.size[1], input_image.size[0])
            # Resize image
            if processing_res > 0:
                if resize_hard:
                    input_image = resize_res(
                        input_image, max_edge_resolution=processing_res
                    )
                else:
                    input_image = resize_max_res(
                        input_image, max_edge_resolution=processing_res
                    )
            input_image = input_image.convert("RGB")
            image = np.asarray(input_image)

            # Normalize rgb values
            rgb = np.transpose(image, (2, 0, 1))  # [H, W, rgb] -> [rgb, H, W]
            rgb_norm = rgb / 255.0 * 2.0 - 1.0
            rgb_norm = torch.from_numpy(rgb_norm).to(self.unet.dtype)
            rgb_norm = rgb_norm[None].to(device)
            assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
            bs_imgs = 1

        # ----------------- Predicting depth -----------------

        single_rgb_dataset = TensorDataset(rgb_norm)
        if batch_size > 0:
            _bs = batch_size
        else:
            _bs = find_batch_size(
                ensemble_size=1, 
                input_res=max(rgb_norm.shape[1:]),
                dtype=self.dtype,
            )

        single_rgb_loader = DataLoader(
            single_rgb_dataset, batch_size=_bs, shuffle=False
        )

        # Predict depth maps (batched)
        pred_list = []
        if show_progress_bar:
            iterable = tqdm(
                single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
            )
        else:
            iterable = single_rgb_loader
        
        for batch in iterable:
            (batched_img, ) = batch
            pred = self.single_infer(
                rgb_in=batched_img,
                mode=mode,
            )
            pred_list.append(pred.detach().clone())
        preds = torch.concat(pred_list, axis=0).squeeze() # [bs_imgs, task_channel_num, H, W]
        preds = preds.view(bs_imgs, task_channel_num, preds.shape[-2], preds.shape[-1])
        
        if match_input_res:
            preds = F.interpolate(preds, input_size, mode=self.task_infos[mode]['interpolate'])

        # ----------------- Post processing -----------------
        if mode == 'depth':
            if len(preds.shape) == 4:
                preds = preds[:, 0] # [bs_imgs, H, W]
            # Scale prediction to [0, 1]
            min_d = preds.view(bs_imgs, -1).min(dim=1)[0]
            max_d = preds.view(bs_imgs, -1).max(dim=1)[0]
            preds = (preds - min_d[:, None, None]) / (max_d[:, None, None] - min_d[:, None, None])
            preds = preds.cpu().numpy().astype(np.float32)
            # Colorize
            pred_colored_img_list = []
            for i in range(bs_imgs):
                pred_colored_chw = colorize_depth_maps(
                    preds[i], 0, 1, cmap=color_map
                ).squeeze()  # [3, H, W], value in (0, 1)
                pred_colored_chw = (pred_colored_chw * 255).astype(np.uint8)
                pred_colored_hwc = chw2hwc(pred_colored_chw)
                pred_colored_img = Image.fromarray(pred_colored_hwc)
                pred_colored_img_list.append(pred_colored_img)

            return GenPerceptOutput(
                pred_np=np.squeeze(preds),
                pred_colored=pred_colored_img_list[0] if len(pred_colored_img_list) == 1 else pred_colored_img_list,
            )    

        elif mode == 'seg' or mode == 'sr':
            if not self.customized_head:
                # shift to [0, 1]
                preds = (preds + 1.0) / 2.0 
                # shift to [0, 255]
                preds = preds * 255
                # Clip output range
                preds = preds.clip(0, 255).cpu().numpy().astype(np.uint8)
            else:
                raise NotImplementedError

            pred_colored_img_list = []
            for i in range(preds.shape[0]):
                pred_colored_hwc = chw2hwc(preds[i])
                pred_colored_img = Image.fromarray(pred_colored_hwc)
                pred_colored_img_list.append(pred_colored_img)

            return GenPerceptOutput(
                pred_np=np.squeeze(preds),
                pred_colored=pred_colored_img_list[0] if len(pred_colored_img_list) == 1 else pred_colored_img_list,
            )

        elif mode == 'normal':
            if not self.customized_head:
                preds = preds.clip(-1, 1).cpu().numpy() # [-1, 1]
            else:
                raise NotImplementedError

            pred_colored_img_list = []
            for i in range(preds.shape[0]):
                pred_colored_chw = norm_to_rgb(preds[i])
                pred_colored_hwc = chw2hwc(pred_colored_chw)
                normal_colored_img_i = Image.fromarray(pred_colored_hwc)
                pred_colored_img_list.append(normal_colored_img_i)

            return GenPerceptOutput(
                pred_np=np.squeeze(preds),
                pred_colored=pred_colored_img_list[0] if len(pred_colored_img_list) == 1 else pred_colored_img_list,
            )

        else:
            raise NotImplementedError

    @torch.no_grad()
    def single_infer(
        self, 
        rgb_in: torch.Tensor, 
        mode: str = 'depth',
    ) -> torch.Tensor:
        """
        Perform an individual depth prediction without ensembling.

        Args:
            rgb_in (torch.Tensor):
                Input RGB image.
            num_inference_steps (int):
                Number of diffusion denoising steps (DDIM) during inference.
            show_pbar (bool):
                Display a progress bar of diffusion denoising.

        Returns:
            torch.Tensor: Predicted depth map.
        """
        device = rgb_in.device
        bs_imgs = rgb_in.shape[0]
        timesteps = torch.tensor([1]).long().repeat(bs_imgs).to(device)

        # Encode image
        rgb_latent = self.encode_rgb(rgb_in)

        batch_embed = self.empty_text_embed
        batch_embed = batch_embed.repeat((rgb_latent.shape[0], 1, 1)).to(device)   # [bs_imgs, 77, 1024]

        # Forward!
        if self.customized_head:
            unet_features = self.unet(rgb_latent, timesteps, encoder_hidden_states=batch_embed, return_feature_only=True)[0][::-1]
            pred = self.customized_head(unet_features)
        else:
            unet_output = self.unet(
                rgb_latent, timesteps, encoder_hidden_states=batch_embed
            )  # [bs_imgs, 4, h, w]
            unet_pred = unet_output.sample
            pred_latent = - unet_pred
            pred_latent.to(device)
            pred = self.decode_pred(pred_latent)
            if mode == 'depth':
                # mean of output channels
                pred = pred.mean(dim=1, keepdim=True)
            # clip prediction
            pred = torch.clip(pred, -1.0, 1.0)
        return pred


    def encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor:
        """
        Encode RGB image into latent.

        Args:
            rgb_in (torch.Tensor):
                Input RGB image to be encoded.

        Returns:
            torch.Tensor: Image latent
        """
        try:
            # encode
            h_temp = self.vae.encoder(rgb_in)
            moments = self.vae.quant_conv(h_temp)
        except:
            # encode
            h_temp = self.vae.encoder(rgb_in.float())
            moments = self.vae.quant_conv(h_temp.float())
            
        mean, logvar = torch.chunk(moments, 2, dim=1)
        # scale latent
        rgb_latent = mean * self.vae_scale_factor
        return rgb_latent

    def decode_pred(self, pred_latent: torch.Tensor) -> torch.Tensor:
        """
        Decode pred latent into pred label.

        Args:
            pred_latent (torch.Tensor):
                prediction latent to be decoded.

        Returns:
            torch.Tensor: Decoded prediction label.
        """
        # scale latent
        pred_latent = pred_latent / self.vae_scale_factor
        # decode
        z = self.vae.post_quant_conv(pred_latent)
        pred = self.vae.decoder(z)
        
        return pred