GenPercept / util /image_util.py
guangkaixu's picture
upload
4d5065f
raw
history blame
5.74 kB
import matplotlib
import numpy as np
import torch
from PIL import Image
from torchvision import transforms
def norm_to_rgb(norm):
# norm: (3, H, W), range from [-1, 1]
norm_rgb = ((norm + 1) * 0.5) * 255
norm_rgb = np.clip(norm_rgb, a_min=0, a_max=255)
norm_rgb = norm_rgb.astype(np.uint8)
return norm_rgb
def colorize_depth_maps(
depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None
):
"""
Colorize depth maps.
"""
assert len(depth_map.shape) >= 2, "Invalid dimension"
if isinstance(depth_map, torch.Tensor):
depth = depth_map.detach().clone().squeeze().numpy()
elif isinstance(depth_map, np.ndarray):
depth = np.squeeze(depth_map.copy())
# reshape to [ (B,) H, W ]
if depth.ndim < 3:
depth = depth[np.newaxis, :, :]
# colorize
cm = matplotlib.colormaps[cmap]
depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1
img_colored_np = np.rollaxis(img_colored_np, 3, 1)
if valid_mask is not None:
if isinstance(depth_map, torch.Tensor):
valid_mask = valid_mask.detach().numpy()
valid_mask = np.squeeze(valid_mask) # [H, W] or [B, H, W]
if valid_mask.ndim < 3:
valid_mask = valid_mask[np.newaxis, np.newaxis, :, :]
else:
valid_mask = valid_mask[:, np.newaxis, :, :]
valid_mask = np.repeat(valid_mask, 3, axis=1)
img_colored_np[~valid_mask] = 0
if isinstance(depth_map, torch.Tensor):
img_colored = torch.from_numpy(img_colored_np).float()
elif isinstance(depth_map, np.ndarray):
img_colored = img_colored_np
return img_colored
def chw2hwc(chw):
assert 3 == len(chw.shape)
if isinstance(chw, torch.Tensor):
hwc = torch.permute(chw, (1, 2, 0))
elif isinstance(chw, np.ndarray):
hwc = np.moveaxis(chw, 0, -1)
return hwc
def resize_max_res(img: Image.Image, max_edge_resolution: int) -> Image.Image:
"""
Resize image to limit maximum edge length while keeping aspect ratio
Args:
img (Image.Image): Image to be resized
max_edge_resolution (int): Maximum edge length (px).
Returns:
Image.Image: Resized image.
"""
original_width, original_height = img.size
downscale_factor = min(
max_edge_resolution / original_width, max_edge_resolution / original_height
)
new_width = int(original_width * downscale_factor)
new_height = int(original_height * downscale_factor)
resized_img = img.resize((new_width, new_height))
return resized_img
def resize_max_res_integer_16(img: Image.Image, max_edge_resolution: int) -> Image.Image:
"""
Resize image to limit maximum edge length while keeping aspect ratio
Args:
img (Image.Image): Image to be resized
max_edge_resolution (int): Maximum edge length (px).
Returns:
Image.Image: Resized image.
"""
original_width, original_height = img.size
downscale_factor = min(
max_edge_resolution / original_width, max_edge_resolution / original_height
)
new_width = int(original_width * downscale_factor) // 16 * 16 # make sure it is integer multiples of 16, used for pixart
new_height = int(original_height * downscale_factor) // 16 * 16 # make sure it is integer multiples of 16, used for pixart
resized_img = img.resize((new_width, new_height))
return resized_img
def resize_res(img: Image.Image, max_edge_resolution: int) -> Image.Image:
"""
Resize image to limit maximum edge length while keeping aspect ratio
Args:
img (Image.Image): Image to be resized
max_edge_resolution (int): Maximum edge length (px).
Returns:
Image.Image: Resized image.
"""
resized_img = img.resize((max_edge_resolution, max_edge_resolution))
return resized_img
class ResizeLongestEdge:
def __init__(self, max_size, interpolation=transforms.InterpolationMode.BILINEAR):
self.max_size = max_size
self.interpolation = interpolation
def __call__(self, img):
scale = self.max_size / max(img.width, img.height)
new_size = (int(img.height * scale), int(img.width * scale))
return transforms.functional.resize(img, new_size, self.interpolation)
class ResizeShortestEdge:
def __init__(self, min_size, interpolation=transforms.InterpolationMode.BILINEAR):
self.min_size = min_size
self.interpolation = interpolation
def __call__(self, img):
scale = self.min_size / min(img.width, img.height)
new_size = (int(img.height * scale), int(img.width * scale))
return transforms.functional.resize(img, new_size, self.interpolation)
class ResizeHard:
def __init__(self, size, interpolation=transforms.InterpolationMode.BILINEAR):
self.size = size
self.interpolation = interpolation
def __call__(self, img):
new_size = (int(self.size), int(self.size))
return transforms.functional.resize(img, new_size, self.interpolation)
class ResizeLongestEdgeInteger:
def __init__(self, max_size, interpolation=transforms.InterpolationMode.BILINEAR, integer=16):
self.max_size = max_size
self.interpolation = interpolation
self.integer = integer
def __call__(self, img):
scale = self.max_size / max(img.width, img.height)
new_size_h = int(img.height * scale) // self.integer * self.integer
new_size_w = int(img.width * scale) // self.integer * self.integer
new_size = (new_size_h, new_size_w)
return transforms.functional.resize(img, new_size, self.interpolation)