Spaces:
Running
on
Zero
Running
on
Zero
# -------------------------------------------------------- | |
# What Matters When Repurposing Diffusion Models for General Dense Perception Tasks? (https://arxiv.org/abs/2403.06090) | |
# Github source: https://github.com/aim-uofa/GenPercept | |
# Copyright (c) 2024, Advanced Intelligent Machines (AIM) | |
# Licensed under The BSD 2-Clause License [see LICENSE for details] | |
# By Guangkai Xu | |
# Based on diffusers codebases | |
# https://github.com/huggingface/diffusers | |
# -------------------------------------------------------- | |
from diffusers import UNet2DConditionModel | |
from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from dataclasses import dataclass | |
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers | |
class CustomUNet2DConditionOutput(BaseOutput): | |
""" | |
The output of [`UNet2DConditionModel`]. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. | |
""" | |
sample: torch.FloatTensor = None | |
multi_level_feats: [torch.FloatTensor] = None | |
class CustomUNet2DConditionModel(UNet2DConditionModel): | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
class_labels: Optional[torch.Tensor] = None, | |
timestep_cond: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
mid_block_additional_residual: Optional[torch.Tensor] = None, | |
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
return_feature: bool = False, | |
return_dict: bool = True, | |
) -> Union[UNet2DConditionOutput, Tuple]: | |
r""" | |
The [`UNet2DConditionModel`] forward method. | |
Args: | |
sample (`torch.FloatTensor`): | |
The noisy input tensor with the following shape `(batch, channel, height, width)`. | |
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. | |
encoder_hidden_states (`torch.FloatTensor`): | |
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. | |
class_labels (`torch.Tensor`, *optional*, defaults to `None`): | |
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. | |
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`): | |
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed | |
through the `self.time_embedding` layer to obtain the timestep embeddings. | |
attention_mask (`torch.Tensor`, *optional*, defaults to `None`): | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
negative values to the attention scores corresponding to "discard" tokens. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
added_cond_kwargs: (`dict`, *optional*): | |
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that | |
are passed along to the UNet blocks. | |
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*): | |
A tuple of tensors that if specified are added to the residuals of down unet blocks. | |
mid_block_additional_residual: (`torch.Tensor`, *optional*): | |
A tensor that if specified is added to the residual of the middle unet block. | |
encoder_attention_mask (`torch.Tensor`): | |
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If | |
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, | |
which adds large negative values to the attention scores corresponding to "discard" tokens. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. | |
added_cond_kwargs: (`dict`, *optional*): | |
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that | |
are passed along to the UNet blocks. | |
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*): | |
additional residuals to be added to UNet long skip connections from down blocks to up blocks for | |
example from ControlNet side model(s) | |
mid_block_additional_residual (`torch.Tensor`, *optional*): | |
additional residual to be added to UNet mid block output, for example from ControlNet side model | |
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*): | |
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s) | |
Returns: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise | |
a `tuple` is returned where the first element is the sample tensor. | |
""" | |
# By default samples have to be AT least a multiple of the overall upsampling factor. | |
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers). | |
# However, the upsampling interpolation output size can be forced to fit any upsampling size | |
# on the fly if necessary. | |
default_overall_up_factor = 2**self.num_upsamplers | |
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
forward_upsample_size = False | |
upsample_size = None | |
for dim in sample.shape[-2:]: | |
if dim % default_overall_up_factor != 0: | |
# Forward upsample size to force interpolation output size. | |
forward_upsample_size = True | |
break | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
if attention_mask is not None: | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None: | |
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
# 0. center input if necessary | |
if self.config.center_input_sample: | |
sample = 2 * sample - 1.0 | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=sample.dtype) | |
emb = self.time_embedding(t_emb, timestep_cond) | |
aug_emb = None | |
if self.class_embedding is not None: | |
if class_labels is None: | |
raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
if self.config.class_embed_type == "timestep": | |
class_labels = self.time_proj(class_labels) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# there might be better ways to encapsulate this. | |
class_labels = class_labels.to(dtype=sample.dtype) | |
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) | |
if self.config.class_embeddings_concat: | |
emb = torch.cat([emb, class_emb], dim=-1) | |
else: | |
emb = emb + class_emb | |
if self.config.addition_embed_type == "text": | |
aug_emb = self.add_embedding(encoder_hidden_states) | |
elif self.config.addition_embed_type == "text_image": | |
# Kandinsky 2.1 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) | |
aug_emb = self.add_embedding(text_embs, image_embs) | |
elif self.config.addition_embed_type == "text_time": | |
# SDXL - style | |
if "text_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" | |
) | |
text_embeds = added_cond_kwargs.get("text_embeds") | |
if "time_ids" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" | |
) | |
time_ids = added_cond_kwargs.get("time_ids") | |
time_embeds = self.add_time_proj(time_ids.flatten()) | |
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) | |
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) | |
add_embeds = add_embeds.to(emb.dtype) | |
aug_emb = self.add_embedding(add_embeds) | |
elif self.config.addition_embed_type == "image": | |
# Kandinsky 2.2 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
aug_emb = self.add_embedding(image_embs) | |
elif self.config.addition_embed_type == "image_hint": | |
# Kandinsky 2.2 - style | |
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
hint = added_cond_kwargs.get("hint") | |
aug_emb, hint = self.add_embedding(image_embs, hint) | |
sample = torch.cat([sample, hint], dim=1) | |
emb = emb + aug_emb if aug_emb is not None else emb | |
if self.time_embed_act is not None: | |
emb = self.time_embed_act(emb) | |
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": | |
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) | |
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": | |
# Kadinsky 2.1 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
) | |
image_embeds = added_cond_kwargs.get("image_embeds") | |
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) | |
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": | |
# Kandinsky 2.2 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
) | |
image_embeds = added_cond_kwargs.get("image_embeds") | |
encoder_hidden_states = self.encoder_hid_proj(image_embeds) | |
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj": | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
) | |
image_embeds = added_cond_kwargs.get("image_embeds") | |
image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype) | |
encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1) | |
# 2. pre-process | |
sample = self.conv_in(sample) | |
# 2.5 GLIGEN position net | |
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: | |
cross_attention_kwargs = cross_attention_kwargs.copy() | |
gligen_args = cross_attention_kwargs.pop("gligen") | |
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} | |
# 3. down | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None | |
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets | |
is_adapter = down_intrablock_additional_residuals is not None | |
# maintain backward compatibility for legacy usage, where | |
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg | |
# but can only use one or the other | |
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None: | |
deprecate( | |
"T2I should not use down_block_additional_residuals", | |
"1.3.0", | |
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ | |
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ | |
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", | |
standard_warn=False, | |
) | |
down_intrablock_additional_residuals = down_block_additional_residuals | |
is_adapter = True | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
# For t2i-adapter CrossAttnDownBlock2D | |
additional_residuals = {} | |
if is_adapter and len(down_intrablock_additional_residuals) > 0: | |
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
**additional_residuals, | |
) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale) | |
if is_adapter and len(down_intrablock_additional_residuals) > 0: | |
sample += down_intrablock_additional_residuals.pop(0) | |
down_block_res_samples += res_samples | |
if is_controlnet: | |
new_down_block_res_samples = () | |
for down_block_res_sample, down_block_additional_residual in zip( | |
down_block_res_samples, down_block_additional_residuals | |
): | |
down_block_res_sample = down_block_res_sample + down_block_additional_residual | |
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) | |
down_block_res_samples = new_down_block_res_samples | |
# 4. mid | |
if self.mid_block is not None: | |
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: | |
sample = self.mid_block( | |
sample, | |
emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
else: | |
sample = self.mid_block(sample, emb) | |
# To support T2I-Adapter-XL | |
if ( | |
is_adapter | |
and len(down_intrablock_additional_residuals) > 0 | |
and sample.shape == down_intrablock_additional_residuals[0].shape | |
): | |
sample += down_intrablock_additional_residuals.pop(0) | |
if is_controlnet: | |
sample = sample + mid_block_additional_residual | |
multi_level_feats = [] | |
# 1, 1280, 24, 24 | |
# multi_level_feats.append(sample) # 1/64 | |
# 5. up | |
for i, upsample_block in enumerate(self.up_blocks): | |
is_final_block = i == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
# if we have not reached the final block and need to forward the | |
# upsample size, we do it here | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
upsample_size=upsample_size, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
upsample_size=upsample_size, | |
scale=lora_scale, | |
) | |
# if not is_final_block: | |
multi_level_feats.append(sample) | |
if return_feature: | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
return CustomUNet2DConditionOutput( | |
multi_level_feats=multi_level_feats, | |
) | |
# 6. post-process | |
if self.conv_norm_out: | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (sample,) | |
return CustomUNet2DConditionOutput( | |
sample=sample, | |
multi_level_feats=multi_level_feats, | |
) | |