guangkaixu commited on
Commit
ff72a0b
·
1 Parent(s): 10e02f0
Files changed (3) hide show
  1. README.md +1 -1
  2. app.py +2 -1
  3. genpercept/genpercept_pipeline.py +1 -1
README.md CHANGED
@@ -17,7 +17,7 @@ If you find it useful, please cite our paper:
17
 
18
  ```
19
  @article{xu2024diffusion,
20
- title={Diffusion Models Trained with Large Data Are Transferable Visual Models},
21
  author={Xu, Guangkai and Ge, Yongtao and Liu, Mingyu and Fan, Chengxiang and Xie, Kangyang and Zhao, Zhiyue and Chen, Hao and Shen, Chunhua},
22
  journal={arXiv preprint arXiv:2403.06090},
23
  year={2024}
 
17
 
18
  ```
19
  @article{xu2024diffusion,
20
+ title={What Matters When Repurposing Diffusion Models for General Dense Perception Tasks?},
21
  author={Xu, Guangkai and Ge, Yongtao and Liu, Mingyu and Fan, Chengxiang and Xie, Kangyang and Zhao, Zhiyue and Chen, Hao and Shen, Chunhua},
22
  journal={arXiv preprint arXiv:2403.06090},
23
  year={2024}
app.py CHANGED
@@ -253,7 +253,8 @@ def run_demo_server(pipe_depth, pipe_normal, pipe_dis, pipe_matting, pipe_seg, p
253
 
254
  gr.Markdown(
255
  """
256
- # GenPercept: Diffusion Models Trained with Large Data Are Transferable Visual Models
 
257
  <p align="center">
258
  <a title="arXiv" href="https://arxiv.org/abs/2403.06090" target="_blank" rel="noopener noreferrer"
259
  style="display: inline-block;">
 
253
 
254
  gr.Markdown(
255
  """
256
+ # What Matters When Repurposing Diffusion Models for General Dense Perception Tasks?
257
+ # (GenPercept: Diffusion Models Trained with Large Data Are Transferable Visual Models)
258
  <p align="center">
259
  <a title="arXiv" href="https://arxiv.org/abs/2403.06090" target="_blank" rel="noopener noreferrer"
260
  style="display: inline-block;">
genpercept/genpercept_pipeline.py CHANGED
@@ -149,7 +149,7 @@ class GenPerceptPipeline(DiffusionPipeline):
149
  resample_method: str = "bilinear",
150
  batch_size: int = 0,
151
  generator: Union[torch.Generator, None] = None,
152
- color_map: str = "Spectral",
153
  show_progress_bar: bool = True,
154
  ensemble_kwargs: Dict = None,
155
  mode = None,
 
149
  resample_method: str = "bilinear",
150
  batch_size: int = 0,
151
  generator: Union[torch.Generator, None] = None,
152
+ color_map: Union[str, None] = None,
153
  show_progress_bar: bool = True,
154
  ensemble_kwargs: Dict = None,
155
  mode = None,