# Copyright 2024 Guangkai Xu, Zhejiang University. All rights reserved. # # Licensed under the CC0-1.0 license; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://github.com/aim-uofa/GenPercept/blob/main/LICENSE # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------------------------- # This code is based on Marigold and diffusers codebases # https://github.com/prs-eth/marigold # https://github.com/huggingface/diffusers # -------------------------------------------------------------------------- # If you find this code useful, we kindly ask you to cite our paper in your work. # Please find bibtex at: https://github.com/aim-uofa/GenPercept#%EF%B8%8F-citation # More information about the method can be found at https://github.com/aim-uofa/GenPercept # -------------------------------------------------------------------------- from __future__ import annotations import functools import os import tempfile import warnings import gradio as gr import numpy as np import spaces import torch as torch from PIL import Image from gradio_imageslider import ImageSlider from gradio_patches.examples import Examples from pipeline_genpercept import GenPerceptPipeline from diffusers import ( DiffusionPipeline, UNet2DConditionModel, AutoencoderKL, ) warnings.filterwarnings( "ignore", message=".*LoginButton created outside of a Blocks context.*" ) default_image_processing_res = 768 default_image_reproducuble = True def process_image_check(path_input): if path_input is None: raise gr.Error( "Missing image in the first pane: upload a file or use one from the gallery below." ) def process_image( pipe, path_input, processing_res=default_image_processing_res, ): name_base, name_ext = os.path.splitext(os.path.basename(path_input)) print(f"Processing image {name_base}{name_ext}") path_output_dir = tempfile.mkdtemp() path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy") path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png") path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png") input_image = Image.open(path_input) pipe_out = pipe( input_image, processing_res=processing_res, batch_size=1 if processing_res == 0 else 0, show_progress_bar=False, ) depth_pred = pipe_out.depth_np depth_colored = pipe_out.depth_colored depth_16bit = (depth_pred * 65535.0).astype(np.uint16) np.save(path_out_fp32, depth_pred) Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16") depth_colored.save(path_out_vis) return ( [path_out_16bit, path_out_vis], [path_out_16bit, path_out_fp32, path_out_vis], ) def run_demo_server(pipe): process_pipe_image = spaces.GPU(functools.partial(process_image, pipe)) process_pipe_video = spaces.GPU( functools.partial(process_video, pipe), duration=120 ) process_pipe_bas = spaces.GPU(functools.partial(process_bas, pipe)) gradio_theme = gr.themes.Default() with gr.Blocks( theme=gradio_theme, title="GenPercept", css=""" #download { height: 118px; } .slider .inner { width: 5px; background: #FFF; } .viewport { aspect-ratio: 4/3; } .tabs button.selected { font-size: 20px !important; color: crimson !important; } h1 { text-align: center; display: block; } h2 { text-align: center; display: block; } h3 { text-align: center; display: block; } .md_feedback li { margin-bottom: 0px !important; } """, head=""" """, ) as demo: gr.Markdown( """ # GenPercept: Diffusion Models Trained with Large Data Are Transferable Visual Models

badge-github-stars

GenPercept leverages the prior knowledge of stable diffusion models to estimate detailed visual perception results. It achieve remarkable transferable performance on fundamental vision perception tasks using a moderate amount of target data (even synthetic data only). Compared to previous methods, our inference process only requires one step and therefore runs faster.

""" ) with gr.Tabs(elem_classes=["tabs"]): with gr.Tab("Depth Estimation"): with gr.Row(): with gr.Column(): image_input = gr.Image( label="Input Image", type="filepath", ) with gr.Row(): image_submit_btn = gr.Button( value="Estimate Depth", variant="primary" ) image_reset_btn = gr.Button(value="Reset") with gr.Accordion("Advanced options", open=False): image_processing_res = gr.Radio( [ ("Native", 0), ("Recommended", 768), ], label="Processing resolution", value=default_image_processing_res, ) with gr.Column(): image_output_slider = ImageSlider( label="Predicted depth of gray / color (red-near, blue-far)", type="filepath", show_download_button=True, show_share_button=True, interactive=False, elem_classes="slider", position=0.25, ) image_output_files = gr.Files( label="Depth outputs", elem_id="download", interactive=False, ) filenames = [] filenames.extend(["anime_%d.jpg" %i+1 for i in range(7)]) filenames.extend(["line_%d.jpg" %i+1 for i in range(6)]) filenames.extend(["real_%d.jpg" %i+1 for i in range(24)]) Examples( fn=process_pipe_image, examples=[ os.path.join("images", "depth", name) for name in filenames ], inputs=[image_input], outputs=[image_output_slider, image_output_files], cache_examples=True, directory_name="examples_image", ) ### Image tab image_submit_btn.click( fn=process_image_check, inputs=image_input, outputs=None, preprocess=False, queue=False, ).success( fn=process_pipe_image, inputs=[ image_input, image_processing_res, ], outputs=[image_output_slider, image_output_files], concurrency_limit=1, ) image_reset_btn.click( fn=lambda: ( None, None, None, default_image_processing_res, ), inputs=[], outputs=[ image_input, image_output_slider, image_output_files, image_processing_res, ], queue=False, ) ### Server launch demo.queue( api_open=False, ).launch( server_name="0.0.0.0", server_port=7860, ) def main(): os.system("pip freeze") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") vae = AutoencoderKL.from_pretrained("guangkaixu/GenPercept", subfolder='vae') unet = UNet2DConditionModel.from_pretrained('guangkaixu/GenPercept', subfolder="unet") empty_text_embed = torch.from_numpy(np.load("./empty_text_embed.npy")).to(device, dtype)[None] # [1, 77, 1024] pipe = GenPerceptPipeline(vae=vae, unet=unet, empty_text_embed=empty_text_embed) try: import xformers pipe.enable_xformers_memory_efficient_attention() except: pass # run without xformers pipe = pipe.to(device) run_demo_server(pipe) if __name__ == "__main__": main()