# Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved. # Last modified: 2024-05-24 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------------------------- # If you find this code useful, we kindly ask you to cite our paper in your work. # Please find bibtex at: https://github.com/prs-eth/Marigold#-citation # More information about the method can be found at https://marigoldmonodepth.github.io # -------------------------------------------------------------------------- import matplotlib import numpy as np import torch from torchvision.transforms import InterpolationMode from torchvision.transforms.functional import resize def process_normals(input_images:torch.Tensor): normal_preds = input_images bsz, d, h, w = normal_preds.shape normal_preds = normal_preds / (torch.norm(normal_preds, p=2, dim=1).unsqueeze(1)+1e-5) phi = torch.atan2(normal_preds[:,1,:,:], normal_preds[:,0,:,:]).mean(dim=0) theta = torch.atan2(torch.norm(normal_preds[:,:2,:,:], p=2, dim=1), normal_preds[:,2,:,:]).mean(dim=0) normal_pred = torch.zeros((d,h,w)).to(normal_preds) normal_pred[0,:,:] = torch.sin(theta) * torch.cos(phi) normal_pred[1,:,:] = torch.sin(theta) * torch.sin(phi) normal_pred[2,:,:] = torch.cos(theta) angle_error = torch.acos(torch.clip(torch.cosine_similarity(normal_pred[None], normal_preds, dim=1),-0.999, 0.999)) normal_idx = torch.argmin(angle_error.reshape(bsz,-1).sum(-1)) return normal_preds[normal_idx] def colorize_depth_maps( depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None ): """ Colorize depth maps. """ assert len(depth_map.shape) >= 2, "Invalid dimension" if isinstance(depth_map, torch.Tensor): depth = depth_map.detach().squeeze().numpy() elif isinstance(depth_map, np.ndarray): depth = depth_map.copy().squeeze() # reshape to [ (B,) H, W ] if depth.ndim < 3: depth = depth[np.newaxis, :, :] # colorize cm = matplotlib.colormaps[cmap] depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1) img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1 img_colored_np = np.rollaxis(img_colored_np, 3, 1) if valid_mask is not None: if isinstance(depth_map, torch.Tensor): valid_mask = valid_mask.detach().numpy() valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W] if valid_mask.ndim < 3: valid_mask = valid_mask[np.newaxis, np.newaxis, :, :] else: valid_mask = valid_mask[:, np.newaxis, :, :] valid_mask = np.repeat(valid_mask, 3, axis=1) img_colored_np[~valid_mask] = 0 if isinstance(depth_map, torch.Tensor): img_colored = torch.from_numpy(img_colored_np).float() elif isinstance(depth_map, np.ndarray): img_colored = img_colored_np return img_colored def chw2hwc(chw): assert 3 == len(chw.shape) if isinstance(chw, torch.Tensor): hwc = torch.permute(chw, (1, 2, 0)) elif isinstance(chw, np.ndarray): hwc = np.moveaxis(chw, 0, -1) return hwc def resize_max_res( img: torch.Tensor, max_edge_resolution: int, resample_method: InterpolationMode = InterpolationMode.BILINEAR, ) -> torch.Tensor: """ Resize image to limit maximum edge length while keeping aspect ratio. Args: img (`torch.Tensor`): Image tensor to be resized. Expected shape: [B, C, H, W] max_edge_resolution (`int`): Maximum edge length (pixel). resample_method (`PIL.Image.Resampling`): Resampling method used to resize images. Returns: `torch.Tensor`: Resized image. """ assert 4 == img.dim(), f"Invalid input shape {img.shape}" original_height, original_width = img.shape[-2:] downscale_factor = min( max_edge_resolution / original_width, max_edge_resolution / original_height ) new_width = int(original_width * downscale_factor) new_height = int(original_height * downscale_factor) resized_img = resize(img, (new_height, new_width), resample_method, antialias=True) return resized_img def get_tv_resample_method(method_str: str) -> InterpolationMode: try: resample_method_dict = { "bilinear": InterpolationMode.BILINEAR, "bicubic": InterpolationMode.BICUBIC, "nearest": InterpolationMode.NEAREST_EXACT, "nearest-exact": InterpolationMode.NEAREST_EXACT, } except: resample_method_dict = { "bilinear": InterpolationMode.BILINEAR, "bicubic": InterpolationMode.BICUBIC, "nearest": InterpolationMode.NEAREST, } resample_method = resample_method_dict.get(method_str, None) if resample_method is None: raise ValueError(f"Unknown resampling method: {resample_method}") else: return resample_method