dance-monkey / app.py
fffiloni's picture
Update app.py
649f5e6 verified
raw
history blame
6.48 kB
import gradio as gr
import os
import shutil
import yaml
import tempfile
import cv2
import huggingface_hub
import subprocess
import threading
def stream_output(pipe):
for line in iter(pipe.readline, ''):
print(line, end='')
pipe.close()
HF_TKN = os.environ.get("GATED_HF_TOKEN")
huggingface_hub.login(token=HF_TKN)
huggingface_hub.hf_hub_download(
repo_id='yzd-v/DWPose',
filename='yolox_l.onnx',
local_dir='./models/DWPose'
)
huggingface_hub.hf_hub_download(
repo_id='yzd-v/DWPose',
filename='dw-ll_ucoco_384.onnx',
local_dir='./models/DWPose'
)
huggingface_hub.hf_hub_download(
repo_id='ixaac/MimicMotion',
filename='MimicMotion_1.pth',
local_dir='./models'
)
def print_directory_contents(path):
for root, dirs, files in os.walk(path):
level = root.replace(path, '').count(os.sep)
indent = ' ' * 4 * (level)
print(f"{indent}{os.path.basename(root)}/")
subindent = ' ' * 4 * (level + 1)
for f in files:
print(f"{subindent}{f}")
def check_outputs_folder(folder_path):
# Check if the folder exists
if os.path.exists(folder_path) and os.path.isdir(folder_path):
# Delete all contents inside the folder
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path) # Remove file or link
elif os.path.isdir(file_path):
shutil.rmtree(file_path) # Remove directory
except Exception as e:
print(f'Failed to delete {file_path}. Reason: {e}')
else:
print(f'The folder {folder_path} does not exist.')
def check_for_mp4_in_outputs():
# Define the path to the outputs folder
outputs_folder = './outputs'
# Check if the outputs folder exists
if not os.path.exists(outputs_folder):
return None
# Check if there is a .mp4 file in the outputs folder
mp4_files = [f for f in os.listdir(outputs_folder) if f.endswith('.mp4')]
# Return the path to the mp4 file if it exists
if mp4_files:
return os.path.join(outputs_folder, mp4_files[0])
else:
return None
def get_video_fps(video_path):
# Open the video file
video_capture = cv2.VideoCapture(video_path)
if not video_capture.isOpened():
raise ValueError("Error opening video file")
# Get the FPS value
fps = video_capture.get(cv2.CAP_PROP_FPS)
# Release the video capture object
video_capture.release()
return fps
def load_examples(ref_image_in, ref_video_in):
return "./examples/examples_result.mp4"
def infer(ref_image_in, ref_video_in):
# check if 'outputs' dir exists and empty it if necessary
check_outputs_folder('./outputs')
# Create a temporary directory
with tempfile.TemporaryDirectory() as temp_dir:
print("Temporary directory created:", temp_dir)
# Define the values for the variables
ref_video_path = ref_video_in
ref_image_path = ref_image_in
num_frames = 16
resolution = 576
frames_overlap = 6
num_inference_steps = 25
noise_aug_strength = 0
guidance_scale = 2.0
sample_stride = 2
fps = 16
seed = 42
# Create the data structure
data = {
'base_model_path': 'stabilityai/stable-video-diffusion-img2vid-xt-1-1',
'ckpt_path': 'models/MimicMotion_1.pth',
'test_case': [
{
'ref_video_path': ref_video_path,
'ref_image_path': ref_image_path,
'num_frames': num_frames,
'resolution': resolution,
'frames_overlap': frames_overlap,
'num_inference_steps': num_inference_steps,
'noise_aug_strength': noise_aug_strength,
'guidance_scale': guidance_scale,
'sample_stride': sample_stride,
'fps': fps,
'seed': seed
}
]
}
# Define the file path
file_path = os.path.join(temp_dir, 'config.yaml')
# Write the data to a YAML file
with open(file_path, 'w') as file:
yaml.dump(data, file, default_flow_style=False)
print("YAML file 'config.yaml' created successfully in", file_path)
# Execute the inference command
command = ['python', 'inference.py', '--inference_config', file_path]
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1)
# Create threads to handle stdout and stderr
stdout_thread = threading.Thread(target=stream_output, args=(process.stdout,))
stderr_thread = threading.Thread(target=stream_output, args=(process.stderr,))
# Start the threads
stdout_thread.start()
stderr_thread.start()
# Wait for the process to complete and the threads to finish
process.wait()
stdout_thread.join()
stderr_thread.join()
print("Inference script finished with return code:", process.returncode)
# Print the outputs directory contents
print_directory_contents('./outputs')
# Call the function and print the result
mp4_file_path = check_for_mp4_in_outputs()
print(mp4_file_path)
return mp4_file_path
with gr.Blocks() as demo:
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
ref_image_in = gr.Image(type="filepath")
ref_video_in = gr.Video()
submit_btn = gr.Button("Submit")
gr.Examples(
examples = [
["./examples/demo1.jpg", "./examples/preview_1.mp4"]
],
fn = load_examples,
inputs = [ref_image_in, ref_video_in],
outputs = [output_video],
cache_examples = False
)
output_video = gr.Video()
submit_btn.click(
fn = infer,
inputs = [ref_image_in, ref_video_in],
outputs = [output_video]
)
demo.launch(show_api=False, show_error=False)