Spaces:
Running
Running
Create bckp.py
Browse files- mimicmotion/pipelines/bckp.py +618 -0
mimicmotion/pipelines/bckp.py
ADDED
@@ -0,0 +1,618 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Callable, Dict, List, Optional, Union
|
4 |
+
|
5 |
+
import PIL.Image
|
6 |
+
import einops
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from diffusers.image_processor import VaeImageProcessor, PipelineImageInput
|
10 |
+
from diffusers.models import AutoencoderKLTemporalDecoder, UNetSpatioTemporalConditionModel
|
11 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
12 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import retrieve_timesteps
|
13 |
+
from diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion \
|
14 |
+
import _resize_with_antialiasing, _append_dims
|
15 |
+
from diffusers.schedulers import EulerDiscreteScheduler
|
16 |
+
from diffusers.utils import BaseOutput, logging
|
17 |
+
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
|
18 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
19 |
+
|
20 |
+
from ..modules.pose_net import PoseNet
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
23 |
+
|
24 |
+
|
25 |
+
def _append_dims(x, target_dims):
|
26 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
27 |
+
dims_to_append = target_dims - x.ndim
|
28 |
+
if dims_to_append < 0:
|
29 |
+
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
|
30 |
+
return x[(...,) + (None,) * dims_to_append]
|
31 |
+
|
32 |
+
|
33 |
+
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid
|
34 |
+
def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"):
|
35 |
+
batch_size, channels, num_frames, height, width = video.shape
|
36 |
+
outputs = []
|
37 |
+
for batch_idx in range(batch_size):
|
38 |
+
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
|
39 |
+
batch_output = processor.postprocess(batch_vid, output_type)
|
40 |
+
|
41 |
+
outputs.append(batch_output)
|
42 |
+
|
43 |
+
if output_type == "np":
|
44 |
+
outputs = np.stack(outputs)
|
45 |
+
|
46 |
+
elif output_type == "pt":
|
47 |
+
outputs = torch.stack(outputs)
|
48 |
+
|
49 |
+
elif not output_type == "pil":
|
50 |
+
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil]")
|
51 |
+
|
52 |
+
return outputs
|
53 |
+
|
54 |
+
|
55 |
+
@dataclass
|
56 |
+
class MimicMotionPipelineOutput(BaseOutput):
|
57 |
+
r"""
|
58 |
+
Output class for mimicmotion pipeline.
|
59 |
+
Args:
|
60 |
+
frames (`[List[List[PIL.Image.Image]]`, `np.ndarray`, `torch.Tensor`]):
|
61 |
+
List of denoised PIL images of length `batch_size` or numpy array or torch tensor of shape `(batch_size,
|
62 |
+
num_frames, height, width, num_channels)`.
|
63 |
+
"""
|
64 |
+
|
65 |
+
frames: Union[List[List[PIL.Image.Image]], np.ndarray, torch.Tensor]
|
66 |
+
|
67 |
+
|
68 |
+
class MimicMotionPipeline(DiffusionPipeline):
|
69 |
+
r"""
|
70 |
+
Pipeline to generate video from an input image using Stable Video Diffusion.
|
71 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
72 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
73 |
+
Args:
|
74 |
+
vae ([`AutoencoderKLTemporalDecoder`]):
|
75 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
76 |
+
image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
|
77 |
+
Frozen CLIP image-encoder ([laion/CLIP-ViT-H-14-laion2B-s32B-b79K]
|
78 |
+
(https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)).
|
79 |
+
unet ([`UNetSpatioTemporalConditionModel`]):
|
80 |
+
A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents.
|
81 |
+
scheduler ([`EulerDiscreteScheduler`]):
|
82 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
83 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
84 |
+
A `CLIPImageProcessor` to extract features from generated images.
|
85 |
+
pose_net ([`PoseNet`]):
|
86 |
+
A `` to inject pose signals into unet.
|
87 |
+
"""
|
88 |
+
|
89 |
+
model_cpu_offload_seq = "image_encoder->unet->vae"
|
90 |
+
_callback_tensor_inputs = ["latents"]
|
91 |
+
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
vae: AutoencoderKLTemporalDecoder,
|
95 |
+
image_encoder: CLIPVisionModelWithProjection,
|
96 |
+
unet: UNetSpatioTemporalConditionModel,
|
97 |
+
scheduler: EulerDiscreteScheduler,
|
98 |
+
feature_extractor: CLIPImageProcessor,
|
99 |
+
pose_net: PoseNet,
|
100 |
+
):
|
101 |
+
super().__init__()
|
102 |
+
|
103 |
+
self.register_modules(
|
104 |
+
vae=vae,
|
105 |
+
image_encoder=image_encoder,
|
106 |
+
unet=unet,
|
107 |
+
scheduler=scheduler,
|
108 |
+
feature_extractor=feature_extractor,
|
109 |
+
pose_net=pose_net,
|
110 |
+
)
|
111 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
112 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
113 |
+
|
114 |
+
def _encode_image(
|
115 |
+
self,
|
116 |
+
image: PipelineImageInput,
|
117 |
+
device: Union[str, torch.device],
|
118 |
+
num_videos_per_prompt: int,
|
119 |
+
do_classifier_free_guidance: bool):
|
120 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
121 |
+
|
122 |
+
if not isinstance(image, torch.Tensor):
|
123 |
+
image = self.image_processor.pil_to_numpy(image)
|
124 |
+
image = self.image_processor.numpy_to_pt(image)
|
125 |
+
|
126 |
+
# We normalize the image before resizing to match with the original implementation.
|
127 |
+
# Then we unnormalize it after resizing.
|
128 |
+
image = image * 2.0 - 1.0
|
129 |
+
image = _resize_with_antialiasing(image, (224, 224))
|
130 |
+
image = (image + 1.0) / 2.0
|
131 |
+
|
132 |
+
# Normalize the image with for CLIP input
|
133 |
+
image = self.feature_extractor(
|
134 |
+
images=image,
|
135 |
+
do_normalize=True,
|
136 |
+
do_center_crop=False,
|
137 |
+
do_resize=False,
|
138 |
+
do_rescale=False,
|
139 |
+
return_tensors="pt",
|
140 |
+
).pixel_values
|
141 |
+
|
142 |
+
image = image.to(device=device, dtype=dtype)
|
143 |
+
image_embeddings = self.image_encoder(image).image_embeds
|
144 |
+
image_embeddings = image_embeddings.unsqueeze(1)
|
145 |
+
|
146 |
+
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
147 |
+
bs_embed, seq_len, _ = image_embeddings.shape
|
148 |
+
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
|
149 |
+
image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
150 |
+
|
151 |
+
if do_classifier_free_guidance:
|
152 |
+
negative_image_embeddings = torch.zeros_like(image_embeddings)
|
153 |
+
|
154 |
+
# For classifier free guidance, we need to do two forward passes.
|
155 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
156 |
+
# to avoid doing two forward passes
|
157 |
+
image_embeddings = torch.cat([negative_image_embeddings, image_embeddings])
|
158 |
+
|
159 |
+
return image_embeddings
|
160 |
+
|
161 |
+
def _encode_vae_image(
|
162 |
+
self,
|
163 |
+
image: torch.Tensor,
|
164 |
+
device: Union[str, torch.device],
|
165 |
+
num_videos_per_prompt: int,
|
166 |
+
do_classifier_free_guidance: bool,
|
167 |
+
):
|
168 |
+
image = image.to(device=device, dtype=self.vae.dtype)
|
169 |
+
image_latents = self.vae.encode(image).latent_dist.mode()
|
170 |
+
|
171 |
+
if do_classifier_free_guidance:
|
172 |
+
negative_image_latents = torch.zeros_like(image_latents)
|
173 |
+
|
174 |
+
# For classifier free guidance, we need to do two forward passes.
|
175 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
176 |
+
# to avoid doing two forward passes
|
177 |
+
image_latents = torch.cat([negative_image_latents, image_latents])
|
178 |
+
|
179 |
+
# duplicate image_latents for each generation per prompt, using mps friendly method
|
180 |
+
image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1)
|
181 |
+
|
182 |
+
return image_latents
|
183 |
+
|
184 |
+
def _get_add_time_ids(
|
185 |
+
self,
|
186 |
+
fps: int,
|
187 |
+
motion_bucket_id: int,
|
188 |
+
noise_aug_strength: float,
|
189 |
+
dtype: torch.dtype,
|
190 |
+
batch_size: int,
|
191 |
+
num_videos_per_prompt: int,
|
192 |
+
do_classifier_free_guidance: bool,
|
193 |
+
):
|
194 |
+
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
|
195 |
+
|
196 |
+
passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids)
|
197 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
198 |
+
|
199 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
200 |
+
raise ValueError(
|
201 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, " \
|
202 |
+
f"but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. " \
|
203 |
+
f"Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
204 |
+
)
|
205 |
+
|
206 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
207 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
|
208 |
+
|
209 |
+
if do_classifier_free_guidance:
|
210 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids])
|
211 |
+
|
212 |
+
return add_time_ids
|
213 |
+
|
214 |
+
def decode_latents(
|
215 |
+
self,
|
216 |
+
latents: torch.Tensor,
|
217 |
+
num_frames: int,
|
218 |
+
decode_chunk_size: int = 8):
|
219 |
+
# [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
|
220 |
+
latents = latents.flatten(0, 1)
|
221 |
+
|
222 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
223 |
+
|
224 |
+
forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
|
225 |
+
accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
|
226 |
+
|
227 |
+
# decode decode_chunk_size frames at a time to avoid OOM
|
228 |
+
frames = []
|
229 |
+
for i in range(0, latents.shape[0], decode_chunk_size):
|
230 |
+
num_frames_in = latents[i: i + decode_chunk_size].shape[0]
|
231 |
+
decode_kwargs = {}
|
232 |
+
if accepts_num_frames:
|
233 |
+
# we only pass num_frames_in if it's expected
|
234 |
+
decode_kwargs["num_frames"] = num_frames_in
|
235 |
+
|
236 |
+
frame = self.vae.decode(latents[i: i + decode_chunk_size], **decode_kwargs).sample
|
237 |
+
frames.append(frame.cpu())
|
238 |
+
frames = torch.cat(frames, dim=0)
|
239 |
+
|
240 |
+
# [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
|
241 |
+
frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
|
242 |
+
|
243 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
244 |
+
frames = frames.float()
|
245 |
+
return frames
|
246 |
+
|
247 |
+
def check_inputs(self, image, height, width):
|
248 |
+
if (
|
249 |
+
not isinstance(image, torch.Tensor)
|
250 |
+
and not isinstance(image, PIL.Image.Image)
|
251 |
+
and not isinstance(image, list)
|
252 |
+
):
|
253 |
+
raise ValueError(
|
254 |
+
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
255 |
+
f" {type(image)}"
|
256 |
+
)
|
257 |
+
|
258 |
+
if height % 8 != 0 or width % 8 != 0:
|
259 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
260 |
+
|
261 |
+
def prepare_latents(
|
262 |
+
self,
|
263 |
+
batch_size: int,
|
264 |
+
num_frames: int,
|
265 |
+
num_channels_latents: int,
|
266 |
+
height: int,
|
267 |
+
width: int,
|
268 |
+
dtype: torch.dtype,
|
269 |
+
device: Union[str, torch.device],
|
270 |
+
generator: torch.Generator,
|
271 |
+
latents: Optional[torch.Tensor] = None,
|
272 |
+
):
|
273 |
+
shape = (
|
274 |
+
batch_size,
|
275 |
+
num_frames,
|
276 |
+
num_channels_latents // 2,
|
277 |
+
height // self.vae_scale_factor,
|
278 |
+
width // self.vae_scale_factor,
|
279 |
+
)
|
280 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
281 |
+
raise ValueError(
|
282 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
283 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
284 |
+
)
|
285 |
+
|
286 |
+
if latents is None:
|
287 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
288 |
+
else:
|
289 |
+
latents = latents.to(device)
|
290 |
+
|
291 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
292 |
+
latents = latents * self.scheduler.init_noise_sigma
|
293 |
+
return latents
|
294 |
+
|
295 |
+
@property
|
296 |
+
def guidance_scale(self):
|
297 |
+
return self._guidance_scale
|
298 |
+
|
299 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
300 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
301 |
+
# corresponds to doing no classifier free guidance.
|
302 |
+
@property
|
303 |
+
def do_classifier_free_guidance(self):
|
304 |
+
if isinstance(self.guidance_scale, (int, float)):
|
305 |
+
return self.guidance_scale > 1
|
306 |
+
return self.guidance_scale.max() > 1
|
307 |
+
|
308 |
+
@property
|
309 |
+
def num_timesteps(self):
|
310 |
+
return self._num_timesteps
|
311 |
+
|
312 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
313 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
314 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
315 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
316 |
+
# and should be between [0, 1]
|
317 |
+
|
318 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
319 |
+
extra_step_kwargs = {}
|
320 |
+
if accepts_eta:
|
321 |
+
extra_step_kwargs["eta"] = eta
|
322 |
+
|
323 |
+
# check if the scheduler accepts generator
|
324 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
325 |
+
if accepts_generator:
|
326 |
+
extra_step_kwargs["generator"] = generator
|
327 |
+
return extra_step_kwargs
|
328 |
+
|
329 |
+
@torch.no_grad()
|
330 |
+
def __call__(
|
331 |
+
self,
|
332 |
+
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
|
333 |
+
image_pose: Union[torch.FloatTensor],
|
334 |
+
height: int = 576,
|
335 |
+
width: int = 1024,
|
336 |
+
num_frames: Optional[int] = None,
|
337 |
+
tile_size: Optional[int] = 16,
|
338 |
+
tile_overlap: Optional[int] = 4,
|
339 |
+
num_inference_steps: int = 25,
|
340 |
+
min_guidance_scale: float = 1.0,
|
341 |
+
max_guidance_scale: float = 3.0,
|
342 |
+
fps: int = 7,
|
343 |
+
motion_bucket_id: int = 127,
|
344 |
+
noise_aug_strength: float = 0.02,
|
345 |
+
image_only_indicator: bool = False,
|
346 |
+
decode_chunk_size: Optional[int] = None,
|
347 |
+
num_videos_per_prompt: Optional[int] = 1,
|
348 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
349 |
+
latents: Optional[torch.FloatTensor] = None,
|
350 |
+
output_type: Optional[str] = "pil",
|
351 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
352 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
353 |
+
return_dict: bool = True,
|
354 |
+
device: Union[str, torch.device] =None,
|
355 |
+
):
|
356 |
+
r"""
|
357 |
+
The call function to the pipeline for generation.
|
358 |
+
Args:
|
359 |
+
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
|
360 |
+
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
|
361 |
+
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/
|
362 |
+
feature_extractor/preprocessor_config.json).
|
363 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
364 |
+
The height in pixels of the generated image.
|
365 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
366 |
+
The width in pixels of the generated image.
|
367 |
+
num_frames (`int`, *optional*):
|
368 |
+
The number of video frames to generate. Defaults to 14 for `stable-video-diffusion-img2vid`
|
369 |
+
and to 25 for `stable-video-diffusion-img2vid-xt`
|
370 |
+
num_inference_steps (`int`, *optional*, defaults to 25):
|
371 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
372 |
+
expense of slower inference. This parameter is modulated by `strength`.
|
373 |
+
min_guidance_scale (`float`, *optional*, defaults to 1.0):
|
374 |
+
The minimum guidance scale. Used for the classifier free guidance with first frame.
|
375 |
+
max_guidance_scale (`float`, *optional*, defaults to 3.0):
|
376 |
+
The maximum guidance scale. Used for the classifier free guidance with last frame.
|
377 |
+
fps (`int`, *optional*, defaults to 7):
|
378 |
+
Frames per second.The rate at which the generated images shall be exported to a video after generation.
|
379 |
+
Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training.
|
380 |
+
motion_bucket_id (`int`, *optional*, defaults to 127):
|
381 |
+
The motion bucket ID. Used as conditioning for the generation.
|
382 |
+
The higher the number the more motion will be in the video.
|
383 |
+
noise_aug_strength (`float`, *optional*, defaults to 0.02):
|
384 |
+
The amount of noise added to the init image,
|
385 |
+
the higher it is the less the video will look like the init image. Increase it for more motion.
|
386 |
+
image_only_indicator (`bool`, *optional*, defaults to False):
|
387 |
+
Whether to treat the inputs as batch of images instead of videos.
|
388 |
+
decode_chunk_size (`int`, *optional*):
|
389 |
+
The number of frames to decode at a time.The higher the chunk size, the higher the temporal consistency
|
390 |
+
between frames, but also the higher the memory consumption.
|
391 |
+
By default, the decoder will decode all frames at once for maximal quality.
|
392 |
+
Reduce `decode_chunk_size` to reduce memory usage.
|
393 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
394 |
+
The number of images to generate per prompt.
|
395 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
396 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
397 |
+
generation deterministic.
|
398 |
+
latents (`torch.FloatTensor`, *optional*):
|
399 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
400 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
401 |
+
tensor is generated by sampling using the supplied random `generator`.
|
402 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
403 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
404 |
+
callback_on_step_end (`Callable`, *optional*):
|
405 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
406 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
407 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
408 |
+
`callback_on_step_end_tensor_inputs`.
|
409 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
410 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
411 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
412 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
413 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
414 |
+
Whether to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
415 |
+
plain tuple.
|
416 |
+
device:
|
417 |
+
On which device the pipeline runs on.
|
418 |
+
Returns:
|
419 |
+
[`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] or `tuple`:
|
420 |
+
If `return_dict` is `True`,
|
421 |
+
[`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] is returned,
|
422 |
+
otherwise a `tuple` is returned where the first element is a list of list with the generated frames.
|
423 |
+
Examples:
|
424 |
+
```py
|
425 |
+
from diffusers import StableVideoDiffusionPipeline
|
426 |
+
from diffusers.utils import load_image, export_to_video
|
427 |
+
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
428 |
+
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16")
|
429 |
+
pipe.to("cuda")
|
430 |
+
image = load_image(
|
431 |
+
"https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200")
|
432 |
+
image = image.resize((1024, 576))
|
433 |
+
frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0]
|
434 |
+
export_to_video(frames, "generated.mp4", fps=7)
|
435 |
+
```
|
436 |
+
"""
|
437 |
+
# 0. Default height and width to unet
|
438 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
439 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
440 |
+
|
441 |
+
num_frames = num_frames if num_frames is not None else self.unet.config.num_frames
|
442 |
+
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames
|
443 |
+
|
444 |
+
# 1. Check inputs. Raise error if not correct
|
445 |
+
self.check_inputs(image, height, width)
|
446 |
+
|
447 |
+
# 2. Define call parameters
|
448 |
+
if isinstance(image, PIL.Image.Image):
|
449 |
+
batch_size = 1
|
450 |
+
elif isinstance(image, list):
|
451 |
+
batch_size = len(image)
|
452 |
+
else:
|
453 |
+
batch_size = image.shape[0]
|
454 |
+
device = device if device is not None else self._execution_device
|
455 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
456 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
457 |
+
# corresponds to doing no classifier free guidance.
|
458 |
+
self._guidance_scale = max_guidance_scale
|
459 |
+
|
460 |
+
# 3. Encode input image
|
461 |
+
self.image_encoder.to(device)
|
462 |
+
image_embeddings = self._encode_image(image, device, num_videos_per_prompt, self.do_classifier_free_guidance)
|
463 |
+
self.image_encoder.cpu()
|
464 |
+
|
465 |
+
# NOTE: Stable Diffusion Video was conditioned on fps - 1, which
|
466 |
+
# is why it is reduced here.
|
467 |
+
fps = fps - 1
|
468 |
+
|
469 |
+
# 4. Encode input image using VAE
|
470 |
+
image = self.image_processor.preprocess(image, height=height, width=width).to(device)
|
471 |
+
noise = randn_tensor(image.shape, generator=generator, device=device, dtype=image.dtype)
|
472 |
+
image = image + noise_aug_strength * noise
|
473 |
+
|
474 |
+
self.vae.to(device)
|
475 |
+
image_latents = self._encode_vae_image(
|
476 |
+
image,
|
477 |
+
device=device,
|
478 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
479 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
480 |
+
)
|
481 |
+
image_latents = image_latents.to(image_embeddings.dtype)
|
482 |
+
self.vae.cpu()
|
483 |
+
|
484 |
+
# Repeat the image latents for each frame so we can concatenate them with the noise
|
485 |
+
# image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width]
|
486 |
+
image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1)
|
487 |
+
|
488 |
+
# 5. Get Added Time IDs
|
489 |
+
added_time_ids = self._get_add_time_ids(
|
490 |
+
fps,
|
491 |
+
motion_bucket_id,
|
492 |
+
noise_aug_strength,
|
493 |
+
image_embeddings.dtype,
|
494 |
+
batch_size,
|
495 |
+
num_videos_per_prompt,
|
496 |
+
self.do_classifier_free_guidance,
|
497 |
+
)
|
498 |
+
added_time_ids = added_time_ids.to(device)
|
499 |
+
|
500 |
+
# 4. Prepare timesteps
|
501 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, None)
|
502 |
+
|
503 |
+
# 5. Prepare latent variables
|
504 |
+
num_channels_latents = self.unet.config.in_channels
|
505 |
+
latents = self.prepare_latents(
|
506 |
+
batch_size * num_videos_per_prompt,
|
507 |
+
tile_size,
|
508 |
+
num_channels_latents,
|
509 |
+
height,
|
510 |
+
width,
|
511 |
+
image_embeddings.dtype,
|
512 |
+
device,
|
513 |
+
generator,
|
514 |
+
latents,
|
515 |
+
)
|
516 |
+
latents = latents.repeat(1, num_frames // tile_size + 1, 1, 1, 1)[:, :num_frames]
|
517 |
+
|
518 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
519 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, 0.0)
|
520 |
+
|
521 |
+
# 7. Prepare guidance scale
|
522 |
+
guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0)
|
523 |
+
guidance_scale = guidance_scale.to(device, latents.dtype)
|
524 |
+
guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1)
|
525 |
+
guidance_scale = _append_dims(guidance_scale, latents.ndim)
|
526 |
+
|
527 |
+
self._guidance_scale = guidance_scale
|
528 |
+
|
529 |
+
# 8. Denoising loop
|
530 |
+
self._num_timesteps = len(timesteps)
|
531 |
+
indices = [[0, *range(i + 1, min(i + tile_size, num_frames))] for i in
|
532 |
+
range(0, num_frames - tile_size + 1, tile_size - tile_overlap)]
|
533 |
+
if indices[-1][-1] < num_frames - 1:
|
534 |
+
indices.append([0, *range(num_frames - tile_size + 1, num_frames)])
|
535 |
+
|
536 |
+
self.pose_net.to(device)
|
537 |
+
self.unet.to(device)
|
538 |
+
|
539 |
+
with torch.cuda.device(device):
|
540 |
+
torch.cuda.empty_cache()
|
541 |
+
|
542 |
+
with self.progress_bar(total=len(timesteps) * len(indices)) as progress_bar:
|
543 |
+
for i, t in enumerate(timesteps):
|
544 |
+
# expand the latents if we are doing classifier free guidance
|
545 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
546 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
547 |
+
|
548 |
+
# Concatenate image_latents over channels dimension
|
549 |
+
latent_model_input = torch.cat([latent_model_input, image_latents], dim=2)
|
550 |
+
|
551 |
+
# predict the noise residual
|
552 |
+
noise_pred = torch.zeros_like(image_latents)
|
553 |
+
noise_pred_cnt = image_latents.new_zeros((num_frames,))
|
554 |
+
weight = (torch.arange(tile_size, device=device) + 0.5) * 2. / tile_size
|
555 |
+
weight = torch.minimum(weight, 2 - weight)
|
556 |
+
for idx in indices:
|
557 |
+
|
558 |
+
# classification-free inference
|
559 |
+
pose_latents = self.pose_net(image_pose[idx].to(device))
|
560 |
+
_noise_pred = self.unet(
|
561 |
+
latent_model_input[:1, idx],
|
562 |
+
t,
|
563 |
+
encoder_hidden_states=image_embeddings[:1],
|
564 |
+
added_time_ids=added_time_ids[:1],
|
565 |
+
pose_latents=None,
|
566 |
+
image_only_indicator=image_only_indicator,
|
567 |
+
return_dict=False,
|
568 |
+
)[0]
|
569 |
+
noise_pred[:1, idx] += _noise_pred * weight[:, None, None, None]
|
570 |
+
|
571 |
+
# normal inference
|
572 |
+
_noise_pred = self.unet(
|
573 |
+
latent_model_input[1:, idx],
|
574 |
+
t,
|
575 |
+
encoder_hidden_states=image_embeddings[1:],
|
576 |
+
added_time_ids=added_time_ids[1:],
|
577 |
+
pose_latents=pose_latents,
|
578 |
+
image_only_indicator=image_only_indicator,
|
579 |
+
return_dict=False,
|
580 |
+
)[0]
|
581 |
+
noise_pred[1:, idx] += _noise_pred * weight[:, None, None, None]
|
582 |
+
|
583 |
+
noise_pred_cnt[idx] += weight
|
584 |
+
progress_bar.update()
|
585 |
+
noise_pred.div_(noise_pred_cnt[:, None, None, None])
|
586 |
+
|
587 |
+
# perform guidance
|
588 |
+
if self.do_classifier_free_guidance:
|
589 |
+
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
590 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
591 |
+
|
592 |
+
# compute the previous noisy sample x_t -> x_t-1
|
593 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
594 |
+
|
595 |
+
if callback_on_step_end is not None:
|
596 |
+
callback_kwargs = {}
|
597 |
+
for k in callback_on_step_end_tensor_inputs:
|
598 |
+
callback_kwargs[k] = locals()[k]
|
599 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
600 |
+
|
601 |
+
latents = callback_outputs.pop("latents", latents)
|
602 |
+
|
603 |
+
self.pose_net.cpu()
|
604 |
+
self.unet.cpu()
|
605 |
+
|
606 |
+
if not output_type == "latent":
|
607 |
+
self.vae.decoder.to(device)
|
608 |
+
frames = self.decode_latents(latents, num_frames, decode_chunk_size)
|
609 |
+
frames = tensor2vid(frames, self.image_processor, output_type=output_type)
|
610 |
+
else:
|
611 |
+
frames = latents
|
612 |
+
|
613 |
+
self.maybe_free_model_hooks()
|
614 |
+
|
615 |
+
if not return_dict:
|
616 |
+
return frames
|
617 |
+
|
618 |
+
return MimicMotionPipelineOutput(frames=frames)
|