import gradio as gr import os import shutil import yaml import tempfile import cv2 import huggingface_hub import subprocess import threading import torch from subprocess import getoutput is_shared_ui = False # is_shared_ui = True if "fffiloni/MimicMotion" in os.environ['SPACE_ID'] else False available_property = False if is_shared_ui else True is_gpu_associated = torch.cuda.is_available() if is_gpu_associated: gpu_info = getoutput('nvidia-smi') if("A10G" in gpu_info): which_gpu = "A10G" elif("T4" in gpu_info): which_gpu = "T4" else: which_gpu = "CPU" def stream_output(pipe): for line in iter(pipe.readline, ''): print(line, end='') pipe.close() HF_TKN = os.environ.get("GATED_HF_TOKEN") huggingface_hub.login(token=HF_TKN) huggingface_hub.hf_hub_download( repo_id='yzd-v/DWPose', filename='yolox_l.onnx', local_dir='./models/DWPose' ) huggingface_hub.hf_hub_download( repo_id='yzd-v/DWPose', filename='dw-ll_ucoco_384.onnx', local_dir='./models/DWPose' ) huggingface_hub.hf_hub_download( repo_id='ixaac/MimicMotion', filename='MimicMotion_1.pth', local_dir='./models' ) def print_directory_contents(path): for root, dirs, files in os.walk(path): level = root.replace(path, '').count(os.sep) indent = ' ' * 4 * (level) print(f"{indent}{os.path.basename(root)}/") subindent = ' ' * 4 * (level + 1) for f in files: print(f"{subindent}{f}") def check_outputs_folder(folder_path): # Check if the folder exists if os.path.exists(folder_path) and os.path.isdir(folder_path): # Delete all contents inside the folder for filename in os.listdir(folder_path): file_path = os.path.join(folder_path, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) # Remove file or link elif os.path.isdir(file_path): shutil.rmtree(file_path) # Remove directory except Exception as e: print(f'Failed to delete {file_path}. Reason: {e}') else: print(f'The folder {folder_path} does not exist.') def check_for_mp4_in_outputs(): # Define the path to the outputs folder outputs_folder = './outputs' # Check if the outputs folder exists if not os.path.exists(outputs_folder): return None # Check if there is a .mp4 file in the outputs folder mp4_files = [f for f in os.listdir(outputs_folder) if f.endswith('.mp4')] # Return the path to the mp4 file if it exists if mp4_files: return os.path.join(outputs_folder, mp4_files[0]) else: return None def get_video_fps(video_path): # Open the video file video_capture = cv2.VideoCapture(video_path) if not video_capture.isOpened(): raise ValueError("Error opening video file") # Get the FPS value fps = video_capture.get(cv2.CAP_PROP_FPS) # Release the video capture object video_capture.release() return fps def load_examples(ref_image_in, ref_video_in): return "./examples/mimicmotion_result1_example.mp4" def infer(ref_image_in, ref_video_in, num_inference_steps, guidance_scale, output_frames_per_second, seed, checkpoint_version): # check if 'outputs' dir exists and empty it if necessary check_outputs_folder('./outputs') # Create a temporary directory with tempfile.TemporaryDirectory() as temp_dir: print("Temporary directory created:", temp_dir) # Define the values for the variables ref_video_path = ref_video_in ref_image_path = ref_image_in num_frames = 16 resolution = 576 frames_overlap = 6 num_inference_steps = num_inference_steps # 25 noise_aug_strength = 0 guidance_scale = guidance_scale # 2.0 sample_stride = 2 fps = output_frames_per_second # 16 seed = seed # 42 # Create the data structure data = { 'base_model_path': 'stabilityai/stable-video-diffusion-img2vid-xt-1-1', 'ckpt_path': f'models/{checkpoint_version}', 'test_case': [ { 'ref_video_path': ref_video_path, 'ref_image_path': ref_image_path, 'num_frames': num_frames, 'resolution': resolution, 'frames_overlap': frames_overlap, 'num_inference_steps': num_inference_steps, 'noise_aug_strength': noise_aug_strength, 'guidance_scale': guidance_scale, 'sample_stride': sample_stride, 'fps': fps, 'seed': seed } ] } # Define the file path file_path = os.path.join(temp_dir, 'config.yaml') # Write the data to a YAML file with open(file_path, 'w') as file: yaml.dump(data, file, default_flow_style=False) print("YAML file 'config.yaml' created successfully in", file_path) # Execute the inference command command = ['python', 'inference.py', '--inference_config', file_path] process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1) # Create threads to handle stdout and stderr stdout_thread = threading.Thread(target=stream_output, args=(process.stdout,)) stderr_thread = threading.Thread(target=stream_output, args=(process.stderr,)) # Start the threads stdout_thread.start() stderr_thread.start() # Wait for the process to complete and the threads to finish process.wait() stdout_thread.join() stderr_thread.join() print("Inference script finished with return code:", process.returncode) # Print the outputs directory contents print_directory_contents('./outputs') # Call the function and print the result mp4_file_path = check_for_mp4_in_outputs() print(mp4_file_path) return mp4_file_path output_video = gr.Video(label="Output Video") css = """ div#warning-duplicate { background-color: #ebf5ff; padding: 0 16px 16px; margin: 20px 0; color: #030303!important; } div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { color: #0f4592!important; } div#warning-duplicate strong { color: #0f4592; } p.actions { display: flex; align-items: center; margin: 20px 0; } div#warning-duplicate .actions a { display: inline-block; margin-right: 10px; } div#warning-ready { background-color: #ecfdf5; padding: 0 16px 16px; margin: 20px 0; color: #030303!important; } div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p { color: #057857!important; } .custom-color { color: #030303 !important; } """ with gr.Blocks(css=css) as demo: with gr.Column(): gr.Markdown("# MimicMotion") gr.Markdown("High-quality human motion video generation with pose-guided control") with gr.Row(): with gr.Column(): if is_shared_ui: top_description = gr.HTML(f'''

Attention: this Space need to be duplicated to work

To make it work, duplicate the Space and run it on your own profile using a private GPU (A10G-large recommended).
A A10G-large costs US$1.50/h.

Duplicate this Space to start experimenting with this demo

''', elem_id="warning-duplicate") else: if(is_gpu_associated): top_description = gr.HTML(f'''

You have successfully associated a {which_gpu} GPU to this Space 🎉

You will be billed by the minute from when you activated the GPU until when it is turned off.

''', elem_id="warning-ready") else: top_description = gr.HTML(f'''

You have successfully duplicated the MimicMotion Space 🎉

There's only one step left before you can properly play with this demo: attribute a GPU to it (via the Settings tab) and run the app below. You will be billed by the minute from when you activate the GPU until when it is turned off.

🔥   Set recommended GPU

''', elem_id="warning-setgpu") with gr.Row(): ref_image_in = gr.Image(label="Person Image Reference", type="filepath") ref_video_in = gr.Video(label="Person Video Reference") with gr.Accordion("Advanced Settings", open=False): num_inference_steps = gr.Slider(label="num inference steps", minimum=12, maximum=50, value=25, step=1, interactive=available_property) guidance_scale = gr.Slider(label="guidance scale", minimum=0.1, maximum=10, value=2, step=0.1, interactive=available_property) with gr.Row(): output_frames_per_second = gr.Slider(label="fps", minimum=1, maximum=60, value=16, step=1, interactive=available_property) seed = gr.Number(label="Seed", value=42, interactive=available_property) checkpoint_version = gr.Dropdown(label="Checkpoint Version", choices=["MimicMotion_1.pth", "MimicMotion_1-1.pth"], value="MimicMotion_1.pth", interactive=available_property) submit_btn = gr.Button("Submit", interactive=available_property) gr.Examples( examples = [ ["./examples/demo1.jpg", "./examples/preview_1.mp4"] ], fn = load_examples, inputs = [ref_image_in, ref_video_in], outputs = [output_video], run_on_click = True, cache_examples = False ) output_video.render() submit_btn.click( fn = infer, inputs = [ref_image_in, ref_video_in, num_inference_steps, guidance_scale, output_frames_per_second, seed, checkpoint_version], outputs = [output_video] ) demo.launch(show_api=False, show_error=False)