Spaces:
Sleeping
Sleeping
File size: 9,706 Bytes
a235f02 6fd592e a235f02 6fd592e a235f02 6fd592e a235f02 6fd592e a235f02 6fd592e a235f02 6fd592e a235f02 6fd592e a235f02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import traceback
import uuid
from models.whisper import model
import modules.register as register
from processor import generate_audio
import json
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, HttpUrl
from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.docs import get_swagger_ui_html
import os
import requests
from modules.audio import convert, get_audio_duration
from modules.r2 import upload_to_s3, upload_image_to_s3
import threading
import queue
from diffusers import DiffusionPipeline
import torch
from datetime import datetime
import random
import numpy as np
SAVE_DIR = "saved_images"
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "guardiancc/lora"
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
vpv_webhook = os.environ.get("VPV_WEBHOOK")
app = FastAPI(title="Minha API", description="API de exemplo com FastAPI e Swagger", version="1.0.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def save_generated_image(image):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
image.save(filepath)
return filepath
def inference_image(prompt):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
guidance_scale=3.5,
num_inference_steps=20,
width=512,
height=512,
generator=generator,
joint_attention_kwargs={"scale": 0.8},
).images[0]
filepath = save_generated_image(image, prompt)
url = upload_image_to_s3(filepath, os.path.basename(filepath), "png")
os.unlink(filepath)
return url
def download_file(url: str) -> str:
"""
Baixa um arquivo da URL fornecida e o salva no diretório 'downloads/'.
O nome do arquivo é extraído da URL automaticamente.
"""
try:
os.makedirs("downloads", exist_ok=True)
file_name = os.path.basename(url.split("?")[0])
save_path = os.path.join("downloads", file_name)
response = requests.get(url)
response.raise_for_status()
with open(save_path, 'wb') as f:
f.write(response.content)
return save_path
except requests.exceptions.RequestException as e:
raise Exception(f"Erro ao baixar o arquivo: {e}")
@app.get("/test", include_in_schema=False)
def test():
return {"ok": True}
@app.get("/", include_in_schema=False)
async def custom_swagger_ui_html():
return get_swagger_ui_html(openapi_url="/openapi.json", title="Alert Pix Ai v2")
@app.get("/openapi.json", include_in_schema=False)
async def openapi():
with open("swagger.json") as f:
return json.load(f)
class ProcessRequest(BaseModel):
key: str
text: str
id: str
receiver: str
webhook: str
censor: bool = False
offset: float = -0.3
format: str = "wav"
speed: float = 0.8
crossfade: float = 0.1
class ProcessImage(BaseModel):
prompt: str
id: str
receiver: str
webhook: str
q = queue.Queue()
image_queue = queue.Queue()
def process_queue(q):
while True:
try:
key, censor, offset, text, format, speed, crossfade, id, receiver, webhook = q.get(timeout=5)
audio = generate_audio(key, text, censor, offset, speed=speed, crossfade=crossfade)
convertedAudioPath = convert(audio, format)
duration = get_audio_duration(convertedAudioPath)
audioUrl = upload_to_s3(convertedAudioPath, f"{id}", format)
os.remove(audio)
os.remove(convertedAudioPath)
payload = {
"id": id,
"duration": duration,
"receiver": receiver,
"url": audioUrl
}
requests.post(webhook, json=payload)
except Exception as e:
print(e)
finally:
q.task_done()
def process_image(q):
while True:
try:
prompt, id, receiver, webhook = q.get(timeout=5)
image = inference_image(prompt)
payload = {
"id": id,
"receiver": receiver,
"url": image,
"type": "image"
}
requests.post(webhook, json=payload)
except Exception as e:
print(e)
finally:
q.task_done()
worker_thread = threading.Thread(target=process_queue, args=(q,))
worker_thread.start()
imagge_worker = threading.Thread(target=process_queue, args=(q,))
imagge_worker.start()
@app.post("/process")
def process_audio(payload: ProcessRequest):
key = payload.key
censor = payload.censor
offset = payload.offset
text = payload.text
format = payload.format
speed = payload.speed
crossfade = payload.crossfade
id = payload.id
receiver = payload.receiver
webhook = payload.webhook
if len(text) >= 1000:
raise HTTPException(status_code=500, detail=str(e))
try:
q.put((key, censor, offset, text, format, speed, crossfade, id, receiver, webhook))
return {"success": True, "err": ""}
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
error_trace = traceback.format_exc()
dc_callback = "https://discord.com/api/webhooks/1285586984898662511/QNVvY2rtoKICamlXsC1BreBaYjS9341jz9ANCDBzayXt4C7v-vTFzKfUtKQkwW7BwpfP"
data = {
"content": "",
"tts": False,
"embeds": [
{
"type": "rich",
"title": f"Erro aconteceu na IA - MIMIC - processo",
"description": f"Erro: {str(e)}\n\nDetalhes do erro:\n```{error_trace}```"
}
]
}
headers = {
"Content-Type": "application/json",
"Accept": "application/json",
}
requests.post(dc_callback, headers=headers, data=json.dumps(data))
raise HTTPException(status_code=500, detail=str(e))
@app.post("/image")
def process_image(payload: ProcessImage):
prompt = payload.prompt
id = payload.id
receiver = payload.receiver
webhook = payload.webhook
if len(prompt) <= 5:
raise HTTPException(status_code=500, detail=str(e))
try:
image_queue.put(( prompt, id, receiver, webhook))
return {"success": True, "err": ""}
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
error_trace = traceback.format_exc()
dc_callback = "https://discord.com/api/webhooks/1285586984898662511/QNVvY2rtoKICamlXsC1BreBaYjS9341jz9ANCDBzayXt4C7v-vTFzKfUtKQkwW7BwpfP"
data = {
"content": "",
"tts": False,
"embeds": [
{
"type": "rich",
"title": f"Erro aconteceu na IA - MIMIC - 2 ia",
"description": f"Erro: {str(e)}\n\nDetalhes do erro:\n```{error_trace}```"
}
]
}
headers = {
"Content-Type": "application/json",
"Accept": "application/json",
}
requests.post(dc_callback, headers=headers, data=json.dumps(data))
raise HTTPException(status_code=500, detail=str(e))
class TrainRequest(BaseModel):
audio: HttpUrl
key: str
endpoint: str
id: str
@app.post("/train")
def create_item(payload: TrainRequest):
audio = payload.audio
key = payload.key
endpoint = payload.endpoint
try:
src = download_file(str(audio))
data = register.process_audio(src, key)
for i in range(3):
try:
payload = {"success": True, "id": payload.id}
requests.post(endpoint, json=payload)
break
except Exception as e:
pass
return data
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
error_trace = traceback.format_exc()
dc_callback = "https://discord.com/api/webhooks/1285586984898662511/QNVvY2rtoKICamlXsC1BreBaYjS9341jz9ANCDBzayXt4C7v-vTFzKfUtKQkwW7BwpfP"
data = {
"content": "",
"tts": False,
"embeds": [
{
"type": "rich",
"title": f"Erro aconteceu na IA -MIMIC - treinar",
"description": f"Erro: {str(e)}\n\nDetalhes do erro:\n```{error_trace}```"
}
]
}
headers = {
"Content-Type": "application/json",
"Accept": "application/json",
}
requests.post(dc_callback, headers=headers, data=json.dumps(data))
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860) |