Spaces:
Sleeping
Sleeping
mimic
Browse files
app.py
CHANGED
@@ -11,30 +11,9 @@ from fastapi.openapi.docs import get_swagger_ui_html
|
|
11 |
import os
|
12 |
import requests
|
13 |
from modules.audio import convert, get_audio_duration
|
14 |
-
from modules.r2 import upload_to_s3
|
15 |
import threading
|
16 |
import queue
|
17 |
-
from diffusers import DiffusionPipeline
|
18 |
-
import torch
|
19 |
-
from datetime import datetime
|
20 |
-
import random
|
21 |
-
import numpy as np
|
22 |
-
|
23 |
-
SAVE_DIR = "saved_images"
|
24 |
-
if not os.path.exists(SAVE_DIR):
|
25 |
-
os.makedirs(SAVE_DIR, exist_ok=True)
|
26 |
-
|
27 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
28 |
-
repo_id = "black-forest-labs/FLUX.1-dev"
|
29 |
-
adapter_id = "guardiancc/lora"
|
30 |
-
|
31 |
-
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
32 |
-
pipeline.load_lora_weights(adapter_id)
|
33 |
-
pipeline.enable_sequential_cpu_offload()
|
34 |
-
pipeline = pipeline.to(device)
|
35 |
-
|
36 |
-
MAX_SEED = np.iinfo(np.int32).max
|
37 |
-
MAX_IMAGE_SIZE = 1024
|
38 |
|
39 |
vpv_webhook = os.environ.get("VPV_WEBHOOK")
|
40 |
|
@@ -47,34 +26,6 @@ app.add_middleware(
|
|
47 |
allow_headers=["*"],
|
48 |
)
|
49 |
|
50 |
-
|
51 |
-
def save_generated_image(image):
|
52 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
53 |
-
unique_id = str(uuid.uuid4())[:8]
|
54 |
-
filename = f"{timestamp}_{unique_id}.png"
|
55 |
-
filepath = os.path.join(SAVE_DIR, filename)
|
56 |
-
image.save(filepath)
|
57 |
-
|
58 |
-
return filepath
|
59 |
-
|
60 |
-
def inference_image(prompt):
|
61 |
-
seed = random.randint(0, MAX_SEED)
|
62 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
63 |
-
image = pipeline(
|
64 |
-
prompt=prompt,
|
65 |
-
guidance_scale=3.5,
|
66 |
-
num_inference_steps=20,
|
67 |
-
width=512,
|
68 |
-
height=512,
|
69 |
-
generator=generator,
|
70 |
-
joint_attention_kwargs={"scale": 0.8},
|
71 |
-
).images[0]
|
72 |
-
|
73 |
-
filepath = save_generated_image(image, prompt)
|
74 |
-
url = upload_image_to_s3(filepath, os.path.basename(filepath), "png")
|
75 |
-
os.unlink(filepath)
|
76 |
-
return url
|
77 |
-
|
78 |
def download_file(url: str) -> str:
|
79 |
"""
|
80 |
Baixa um arquivo da URL fornecida e o salva no diret贸rio 'downloads/'.
|
@@ -109,7 +60,6 @@ async def openapi():
|
|
109 |
with open("swagger.json") as f:
|
110 |
return json.load(f)
|
111 |
|
112 |
-
|
113 |
class ProcessRequest(BaseModel):
|
114 |
key: str
|
115 |
text: str
|
@@ -121,15 +71,9 @@ class ProcessRequest(BaseModel):
|
|
121 |
format: str = "wav"
|
122 |
speed: float = 0.8
|
123 |
crossfade: float = 0.1
|
124 |
-
|
125 |
-
class ProcessImage(BaseModel):
|
126 |
-
prompt: str
|
127 |
-
id: str
|
128 |
-
receiver: str
|
129 |
-
webhook: str
|
130 |
|
131 |
q = queue.Queue()
|
132 |
-
image_queue = queue.Queue()
|
133 |
|
134 |
def process_queue(q):
|
135 |
while True:
|
@@ -154,32 +98,9 @@ def process_queue(q):
|
|
154 |
print(e)
|
155 |
finally:
|
156 |
q.task_done()
|
157 |
-
|
158 |
-
def process_image(q):
|
159 |
-
while True:
|
160 |
-
try:
|
161 |
-
prompt, id, receiver, webhook = q.get(timeout=5)
|
162 |
-
image = inference_image(prompt)
|
163 |
-
|
164 |
-
payload = {
|
165 |
-
"id": id,
|
166 |
-
"receiver": receiver,
|
167 |
-
"url": image,
|
168 |
-
"type": "image"
|
169 |
-
}
|
170 |
-
|
171 |
-
requests.post(webhook, json=payload)
|
172 |
-
except Exception as e:
|
173 |
-
print(e)
|
174 |
-
finally:
|
175 |
-
q.task_done()
|
176 |
-
|
177 |
|
178 |
worker_thread = threading.Thread(target=process_queue, args=(q,))
|
179 |
worker_thread.start()
|
180 |
-
|
181 |
-
imagge_worker = threading.Thread(target=process_queue, args=(q,))
|
182 |
-
imagge_worker.start()
|
183 |
|
184 |
@app.post("/process")
|
185 |
def process_audio(payload: ProcessRequest):
|
@@ -227,47 +148,6 @@ def process_audio(payload: ProcessRequest):
|
|
227 |
requests.post(dc_callback, headers=headers, data=json.dumps(data))
|
228 |
raise HTTPException(status_code=500, detail=str(e))
|
229 |
|
230 |
-
@app.post("/image")
|
231 |
-
def process_image(payload: ProcessImage):
|
232 |
-
prompt = payload.prompt
|
233 |
-
id = payload.id
|
234 |
-
receiver = payload.receiver
|
235 |
-
webhook = payload.webhook
|
236 |
-
|
237 |
-
if len(prompt) <= 5:
|
238 |
-
raise HTTPException(status_code=500, detail=str(e))
|
239 |
-
|
240 |
-
try:
|
241 |
-
image_queue.put(( prompt, id, receiver, webhook))
|
242 |
-
return {"success": True, "err": ""}
|
243 |
-
|
244 |
-
except ValueError as e:
|
245 |
-
raise HTTPException(status_code=400, detail=str(e))
|
246 |
-
|
247 |
-
except Exception as e:
|
248 |
-
error_trace = traceback.format_exc()
|
249 |
-
dc_callback = "https://discord.com/api/webhooks/1285586984898662511/QNVvY2rtoKICamlXsC1BreBaYjS9341jz9ANCDBzayXt4C7v-vTFzKfUtKQkwW7BwpfP"
|
250 |
-
|
251 |
-
data = {
|
252 |
-
"content": "",
|
253 |
-
"tts": False,
|
254 |
-
"embeds": [
|
255 |
-
{
|
256 |
-
"type": "rich",
|
257 |
-
"title": f"Erro aconteceu na IA - MIMIC - 2 ia",
|
258 |
-
"description": f"Erro: {str(e)}\n\nDetalhes do erro:\n```{error_trace}```"
|
259 |
-
}
|
260 |
-
]
|
261 |
-
}
|
262 |
-
|
263 |
-
headers = {
|
264 |
-
"Content-Type": "application/json",
|
265 |
-
"Accept": "application/json",
|
266 |
-
}
|
267 |
-
requests.post(dc_callback, headers=headers, data=json.dumps(data))
|
268 |
-
raise HTTPException(status_code=500, detail=str(e))
|
269 |
-
|
270 |
-
|
271 |
class TrainRequest(BaseModel):
|
272 |
audio: HttpUrl
|
273 |
key: str
|
|
|
11 |
import os
|
12 |
import requests
|
13 |
from modules.audio import convert, get_audio_duration
|
14 |
+
from modules.r2 import upload_to_s3
|
15 |
import threading
|
16 |
import queue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
vpv_webhook = os.environ.get("VPV_WEBHOOK")
|
19 |
|
|
|
26 |
allow_headers=["*"],
|
27 |
)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def download_file(url: str) -> str:
|
30 |
"""
|
31 |
Baixa um arquivo da URL fornecida e o salva no diret贸rio 'downloads/'.
|
|
|
60 |
with open("swagger.json") as f:
|
61 |
return json.load(f)
|
62 |
|
|
|
63 |
class ProcessRequest(BaseModel):
|
64 |
key: str
|
65 |
text: str
|
|
|
71 |
format: str = "wav"
|
72 |
speed: float = 0.8
|
73 |
crossfade: float = 0.1
|
74 |
+
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
q = queue.Queue()
|
|
|
77 |
|
78 |
def process_queue(q):
|
79 |
while True:
|
|
|
98 |
print(e)
|
99 |
finally:
|
100 |
q.task_done()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
worker_thread = threading.Thread(target=process_queue, args=(q,))
|
103 |
worker_thread.start()
|
|
|
|
|
|
|
104 |
|
105 |
@app.post("/process")
|
106 |
def process_audio(payload: ProcessRequest):
|
|
|
148 |
requests.post(dc_callback, headers=headers, data=json.dumps(data))
|
149 |
raise HTTPException(status_code=500, detail=str(e))
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
class TrainRequest(BaseModel):
|
152 |
audio: HttpUrl
|
153 |
key: str
|