Spaces:
Runtime error
Runtime error
File size: 6,842 Bytes
d34a4b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import gradio as gr
from PIL import Image
import os
from flux.src.flux.xflux_pipeline import XFluxPipeline
import random
import spaces
def run_xflux_pipeline(
prompt, image, repo_id, name, device,
model_type, width, height, timestep_to_start_cfg, num_steps, true_gs, guidance,
neg_prompt="",
negative_image=None,
save_path='results', control_type='depth', use_controlnet=False, seed=None, num_images_per_prompt=1, use_lora=False, lora_weight=0.7, lora_repo_id="XLabs-AI/flux-lora-collection", lora_name="realism_lora.safetensors", use_ip=False
):
# Montando os argumentos simulando a linha de comando
class Args:
def __init__(self):
self.prompt = prompt
self.image = image
self.control_type = control_type
self.repo_id = repo_id
self.name = name
self.device = device
self.use_controlnet = use_controlnet
self.model_type = model_type
self.width = width
self.height = height
self.timestep_to_start_cfg = timestep_to_start_cfg
self.num_steps = num_steps
self.true_gs = true_gs
self.guidance = guidance
self.num_images_per_prompt = num_images_per_prompt
self.seed = seed if seed else 123456789
self.neg_prompt = neg_prompt
self.img_prompt = Image.open(image)
self.neg_img_prompt = Image.open(negative_image) if negative_image else None
self.ip_scale = 1.0
self.neg_ip_scale = 1.0
self.local_path = None
self.ip_repo_id = "XLabs-AI/flux-ip-adapter"
self.ip_name = "flux-ip-adapter.safetensors"
self.ip_local_path = None
self.lora_repo_id = lora_repo_id
self.lora_name = lora_name
self.lora_local_path = None
self.offload = False
self.use_ip = use_ip
self.use_lora = use_lora
self.lora_weight = lora_weight
self.save_path = save_path
args = Args()
# Carregar a imagem se fornecida
if args.image:
image = Image.open(args.image)
else:
image = None
# Inicializar o pipeline com os parâmetros necessários
xflux_pipeline = XFluxPipeline(args.model_type, args.device, args.offload)
# Configurar ControlNet se necessário
if args.use_controlnet:
print('Loading ControlNet:', args.local_path, args.repo_id, args.name)
xflux_pipeline.set_controlnet(args.control_type, args.local_path, args.repo_id, args.name)
if args.use_ip:
print('load ip-adapter:', args.ip_local_path, args.ip_repo_id, args.ip_name)
xflux_pipeline.set_ip(args.ip_local_path, args.ip_repo_id, args.ip_name)
if args.use_lora:
print('load lora:', args.lora_local_path, args.lora_repo_id, args.lora_name)
xflux_pipeline.set_lora(args.lora_local_path, args.lora_repo_id, args.lora_name, args.lora_weight)
# Laço para gerar imagens
images = []
for _ in range(args.num_images_per_prompt):
seed = random.randint(0, 2147483647)
result = xflux_pipeline(
prompt=args.prompt,
controlnet_image=image,
width=args.width,
height=args.height,
guidance=args.guidance,
num_steps=args.num_steps,
seed=seed,
true_gs=args.true_gs,
neg_prompt=args.neg_prompt,
timestep_to_start_cfg=args.timestep_to_start_cfg,
image_prompt=args.img_prompt,
neg_image_prompt=args.neg_img_prompt,
ip_scale=args.ip_scale,
neg_ip_scale=args.neg_ip_scale,
)
images.append(result)
return images
@spaces.GPU(duration=500)
def process_image(image, prompt, steps, use_lora, use_controlnet, use_depth, use_hed, use_ip, lora_name, lora_path, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg):
return run_xflux_pipeline(
prompt=prompt,
neg_prompt=neg_prompt,
image=image,
negative_image=negative_image,
lora_name=lora_name,
lora_weight=lora_weight,
lora_repo_id=lora_path,
control_type="depth" if use_depth else "hed" if use_hed else "canny",
repo_id="XLabs-AI/flux-controlnet-collections",
name="flux-depth-controlnet.safetensors",
device="cuda",
use_controlnet=use_controlnet,
model_type="flux-dev",
width=1024,
height=1024,
timestep_to_start_cfg=cfg,
num_steps=steps,
num_images_per_prompt=4,
use_lora=use_lora,
true_gs=true_gs,
use_ip=use_ip,
guidance=guidance
)
custom_css = """
body {
background: rgb(24, 24, 27);
}
.gradio-container {
background: rgb(24, 24, 27);
}
.app-container {
background: rgb(24, 24, 27);
}
gradio-app {
background: rgb(24, 24, 27);
}
.sidebar {
background: rgb(31, 31, 35);
border-right: 1px solid rgb(41, 41, 41);
}
"""
with gr.Blocks(css=custom_css) as demo:
with gr.Row(elem_classes="app-container"):
with gr.Column():
input_image = gr.Image(label="Image", type="filepath")
negative_image = gr.Image(label="Negative_image", type="filepath")
submit_btn = gr.Button("Submit")
with gr.Column():
prompt = gr.Textbox(label="Prompt")
neg_prompt = gr.Textbox(label="Neg Prompt")
steps = gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps")
use_lora = gr.Checkbox(label="Use LORA", value=True)
lora_path = gr.Textbox(label="LoraPath", value="XLabs-AI/flux-lora-collection")
lora_name = gr.Textbox(label="LoraName", value="realism_lora.safetensors")
lora_weight = gr.Slider(step=0.1, minimum=0, maximum=1, value=0.7, label="Lora Weight")
controlnet = gr.Checkbox(label="Use Controlnet(by default uses canny)", value=True)
use_ip = gr.Checkbox(label="Use IP")
use_depth = gr.Checkbox(label="Use depth")
use_hed = gr.Checkbox(label="Use hed")
true_gs = gr.Slider(step=0.1, minimum=0, maximum=10, value=3.5, label="TrueGs")
guidance = gr.Slider(minimum=1, maximum=10, value=4, label="Guidance")
cfg = gr.Slider(minimum=1, maximum=10, value=1, label="CFG")
with gr.Column():
output = gr.Gallery(label="Galery output", elem_classes="galery", selected_index=0)
submit_btn.click(process_image, inputs=[input_image, prompt, steps, use_lora, controlnet, use_depth, use_hed, use_ip, lora_name, lora_path, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg], outputs=output)
demo.launch(share=True) |