guardiancc commited on
Commit
cdd0868
·
verified ·
1 Parent(s): d02384f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -23,7 +23,7 @@ print("downloaded!")
23
  from src.flux.xflux_pipeline import XFluxPipeline
24
 
25
  @spaces.GPU(duration=200)
26
- def process_image(lora_path, lora_name, number_of_images, image, prompt, steps, use_lora, use_controlnet, use_depth, use_hed, use_ip, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg):
27
  def run_xflux_pipeline(
28
  prompt, image, repo_id, name, device,
29
  model_type, width, height, timestep_to_start_cfg, num_steps, true_gs, guidance,
@@ -92,7 +92,7 @@ def process_image(lora_path, lora_name, number_of_images, image, prompt, steps,
92
 
93
  # Laço para gerar imagens
94
  images = []
95
- for _ in range(args.num_images_per_prompt):
96
  seed = random.randint(0, 2147483647)
97
  result = xflux_pipeline(
98
  prompt=args.prompt,
@@ -130,7 +130,7 @@ def process_image(lora_path, lora_name, number_of_images, image, prompt, steps,
130
  height=1024,
131
  timestep_to_start_cfg=cfg,
132
  num_steps=steps,
133
- num_images_per_prompt=number_of_images,
134
  use_lora=use_lora,
135
  lora_repo_id=lora_path,
136
  lora_name=lora_name,
@@ -168,7 +168,7 @@ with gr.Blocks() as demo:
168
  with gr.Column(scale=2, elem_classes="app"):
169
  output = gr.Gallery(label="Galery output", elem_classes="galery")
170
 
171
- submit_btn.click(process_image, inputs=[lora_path, lora_name, 1, input_image, prompt, steps, use_lora, controlnet, use_depth, use_hed, use_ip, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg], outputs=output)
172
 
173
  if __name__ == '__main__':
174
  demo.launch(share=True, debug=True)
 
23
  from src.flux.xflux_pipeline import XFluxPipeline
24
 
25
  @spaces.GPU(duration=200)
26
+ def process_image(lora_path, lora_name, image, prompt, steps, use_lora, use_controlnet, use_depth, use_hed, use_ip, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg):
27
  def run_xflux_pipeline(
28
  prompt, image, repo_id, name, device,
29
  model_type, width, height, timestep_to_start_cfg, num_steps, true_gs, guidance,
 
92
 
93
  # Laço para gerar imagens
94
  images = []
95
+ for _ in range(1):
96
  seed = random.randint(0, 2147483647)
97
  result = xflux_pipeline(
98
  prompt=args.prompt,
 
130
  height=1024,
131
  timestep_to_start_cfg=cfg,
132
  num_steps=steps,
133
+ num_images_per_prompt=1,
134
  use_lora=use_lora,
135
  lora_repo_id=lora_path,
136
  lora_name=lora_name,
 
168
  with gr.Column(scale=2, elem_classes="app"):
169
  output = gr.Gallery(label="Galery output", elem_classes="galery")
170
 
171
+ submit_btn.click(process_image, inputs=[lora_path, lora_name, input_image, prompt, steps, use_lora, controlnet, use_depth, use_hed, use_ip, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg], outputs=output)
172
 
173
  if __name__ == '__main__':
174
  demo.launch(share=True, debug=True)