Spaces:
Sleeping
Sleeping
added async
Browse files- backend.py +21 -32
backend.py
CHANGED
@@ -24,11 +24,14 @@ model_id = "google/gemma-2-2b-it"
|
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
25 |
model = AutoModelForCausalLM.from_pretrained(
|
26 |
model_id,
|
27 |
-
device_map="auto",
|
28 |
torch_dtype= torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
29 |
-
token=True
|
30 |
-
)
|
31 |
model.eval()
|
|
|
|
|
|
|
|
|
32 |
# what models will be used by LlamaIndex:
|
33 |
Settings.embed_model = InstructorEmbedding(model_name="hkunlp/instructor-base")
|
34 |
Settings.llm = GemmaLLMInterface(model=model, tokenizer=tokenizer)
|
@@ -54,8 +57,7 @@ def build_index():
|
|
54 |
|
55 |
|
56 |
@spaces.GPU(duration=20)
|
57 |
-
def handle_query(query_str, chathistory):
|
58 |
-
|
59 |
index = build_index()
|
60 |
|
61 |
qa_prompt_str = (
|
@@ -71,45 +73,32 @@ def handle_query(query_str, chathistory):
|
|
71 |
chat_text_qa_msgs = [
|
72 |
(
|
73 |
"system",
|
74 |
-
"Sei un assistente italiano di nome Ossy che risponde solo alle domande o richieste pertinenti.
|
75 |
),
|
76 |
("user", qa_prompt_str),
|
77 |
]
|
78 |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
79 |
|
80 |
try:
|
81 |
-
# Create a streaming query engine
|
82 |
-
"""query_engine = index.as_query_engine(text_qa_template=text_qa_template, streaming=False, similarity_top_k=1)
|
83 |
-
|
84 |
-
# Execute the query
|
85 |
-
streaming_response = query_engine.query(query_str)
|
86 |
-
|
87 |
-
r = streaming_response.response
|
88 |
-
cleaned_result = r.replace("<end_of_turn>", "").strip()
|
89 |
-
yield cleaned_result"""
|
90 |
-
|
91 |
-
# Stream the response
|
92 |
-
"""outputs = []
|
93 |
-
for text in streaming_response.response_gen:
|
94 |
-
|
95 |
-
outputs.append(str(text))
|
96 |
-
yield "".join(outputs)"""
|
97 |
-
|
98 |
memory = ChatMemoryBuffer.from_defaults(token_limit=1500)
|
99 |
chat_engine = index.as_chat_engine(
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
)
|
106 |
|
|
|
107 |
response = chat_engine.stream_chat(query_str)
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
112 |
|
|
|
|
|
113 |
except Exception as e:
|
114 |
yield f"Error processing query: {str(e)}"
|
115 |
|
|
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
25 |
model = AutoModelForCausalLM.from_pretrained(
|
26 |
model_id,
|
27 |
+
device_map="auto", ## change this back to auto!!!
|
28 |
torch_dtype= torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
29 |
+
token=True)
|
|
|
30 |
model.eval()
|
31 |
+
|
32 |
+
#from accelerate import disk_offload
|
33 |
+
#disk_offload(model=model, offload_dir="offload")
|
34 |
+
|
35 |
# what models will be used by LlamaIndex:
|
36 |
Settings.embed_model = InstructorEmbedding(model_name="hkunlp/instructor-base")
|
37 |
Settings.llm = GemmaLLMInterface(model=model, tokenizer=tokenizer)
|
|
|
57 |
|
58 |
|
59 |
@spaces.GPU(duration=20)
|
60 |
+
async def handle_query(query_str, chathistory):
|
|
|
61 |
index = build_index()
|
62 |
|
63 |
qa_prompt_str = (
|
|
|
73 |
chat_text_qa_msgs = [
|
74 |
(
|
75 |
"system",
|
76 |
+
"Sei un assistente italiano di nome Ossy che risponde solo alle domande o richieste pertinenti.",
|
77 |
),
|
78 |
("user", qa_prompt_str),
|
79 |
]
|
80 |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
81 |
|
82 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
memory = ChatMemoryBuffer.from_defaults(token_limit=1500)
|
84 |
chat_engine = index.as_chat_engine(
|
85 |
+
chat_mode="context",
|
86 |
+
memory=memory,
|
87 |
+
system_prompt=(
|
88 |
+
"Sei un assistente italiano di nome Ossy che risponde solo alle domande o richieste pertinenti."
|
89 |
+
),
|
90 |
)
|
91 |
|
92 |
+
# Stream the response
|
93 |
response = chat_engine.stream_chat(query_str)
|
94 |
+
outputs = []
|
95 |
+
|
96 |
+
async for token in response.response_gen:
|
97 |
+
outputs.append(token)
|
98 |
+
yield "".join(outputs)
|
99 |
|
100 |
+
except StopAsyncIteration:
|
101 |
+
yield "No more responses to stream."
|
102 |
except Exception as e:
|
103 |
yield f"Error processing query: {str(e)}"
|
104 |
|