Spaces:
Sleeping
Sleeping
hf llm
Browse files- backend.py +4 -9
backend.py
CHANGED
@@ -63,13 +63,13 @@ os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
|
63 |
llm = HuggingFaceLLM(
|
64 |
context_window=4096,
|
65 |
max_new_tokens=256,
|
66 |
-
generate_kwargs={"temperature": 0.1, "do_sample":
|
67 |
system_prompt=system_prompt,
|
68 |
tokenizer_name="meta-llama/Llama-2-7b-chat-hf",
|
69 |
model_name="meta-llama/Llama-2-7b-chat-hf",
|
70 |
device_map="auto",
|
71 |
# loading model in 8bit for reducing memory
|
72 |
-
model_kwargs={"torch_dtype": torch.float16
|
73 |
)
|
74 |
|
75 |
embed_model= HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
@@ -87,18 +87,13 @@ nodes = SentenceSplitter(chunk_size=512, chunk_overlap=20, paragraph_separator="
|
|
87 |
# Build the vector store index from the nodes
|
88 |
index = VectorStoreIndex(nodes, show_progress = True)
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
#
|
93 |
# what models will be used by LlamaIndex:
|
94 |
#Settings.embed_model = InstructorEmbedding(model_name="hkunlp/instructor-base")
|
95 |
#Settings.embed_model = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
|
96 |
#Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
97 |
-
|
98 |
#Settings.llm = GemmaLLMInterface()
|
99 |
|
100 |
|
101 |
-
|
102 |
documents_paths = {
|
103 |
'blockchain': 'data/blockchainprova.txt',
|
104 |
'metaverse': 'data/metaverseprova.txt',
|
@@ -122,7 +117,7 @@ ISTR = "In italiano, chiedi molto brevemente se la domanda si riferisce agli 'Os
|
|
122 |
############################---------------------------------
|
123 |
|
124 |
# Get the parser
|
125 |
-
parser = SentenceSplitter.from_defaults(
|
126 |
chunk_size=256, chunk_overlap=64, paragraph_separator="\n\n"
|
127 |
)
|
128 |
def build_index(path: str):
|
@@ -136,7 +131,7 @@ def build_index(path: str):
|
|
136 |
#storage_context = StorageContext.from_defaults()
|
137 |
#index.storage_context.persist(persist_dir=PERSIST_DIR)
|
138 |
|
139 |
-
return index
|
140 |
|
141 |
|
142 |
|
|
|
63 |
llm = HuggingFaceLLM(
|
64 |
context_window=4096,
|
65 |
max_new_tokens=256,
|
66 |
+
generate_kwargs={"temperature": 0.1, "do_sample": True},
|
67 |
system_prompt=system_prompt,
|
68 |
tokenizer_name="meta-llama/Llama-2-7b-chat-hf",
|
69 |
model_name="meta-llama/Llama-2-7b-chat-hf",
|
70 |
device_map="auto",
|
71 |
# loading model in 8bit for reducing memory
|
72 |
+
model_kwargs={"torch_dtype": torch.float16 }
|
73 |
)
|
74 |
|
75 |
embed_model= HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
|
|
87 |
# Build the vector store index from the nodes
|
88 |
index = VectorStoreIndex(nodes, show_progress = True)
|
89 |
|
|
|
|
|
|
|
90 |
# what models will be used by LlamaIndex:
|
91 |
#Settings.embed_model = InstructorEmbedding(model_name="hkunlp/instructor-base")
|
92 |
#Settings.embed_model = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
|
93 |
#Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
|
|
94 |
#Settings.llm = GemmaLLMInterface()
|
95 |
|
96 |
|
|
|
97 |
documents_paths = {
|
98 |
'blockchain': 'data/blockchainprova.txt',
|
99 |
'metaverse': 'data/metaverseprova.txt',
|
|
|
117 |
############################---------------------------------
|
118 |
|
119 |
# Get the parser
|
120 |
+
"""parser = SentenceSplitter.from_defaults(
|
121 |
chunk_size=256, chunk_overlap=64, paragraph_separator="\n\n"
|
122 |
)
|
123 |
def build_index(path: str):
|
|
|
131 |
#storage_context = StorageContext.from_defaults()
|
132 |
#index.storage_context.persist(persist_dir=PERSIST_DIR)
|
133 |
|
134 |
+
return index"""
|
135 |
|
136 |
|
137 |
|