Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +182 -0
- packages.txt +1 -0
- requirements.txt +13 -0
app.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import soundfile as sf
|
4 |
+
import torch
|
5 |
+
import torchaudio
|
6 |
+
import torchaudio.transforms as T
|
7 |
+
from datasets import load_dataset
|
8 |
+
from transformers import WhisperForConditionalGeneration, WhisperProcessor, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoModel
|
9 |
+
from langchain.document_loaders import PyPDFLoader
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
from langchain.vectorstores import FAISS
|
12 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
13 |
+
from langchain.prompts import PromptTemplate
|
14 |
+
from langchain.chains import LLMChain, StuffDocumentsChain, RetrievalQA
|
15 |
+
from langchain.llms import LlamaCpp
|
16 |
+
import gradio as gr
|
17 |
+
|
18 |
+
class PDFProcessor:
|
19 |
+
def __init__(self, pdf_path):
|
20 |
+
self.pdf_path = pdf_path
|
21 |
+
|
22 |
+
def load_and_split_pdf(self):
|
23 |
+
loader = PyPDFLoader(self.pdf_path)
|
24 |
+
documents = loader.load()
|
25 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=20)
|
26 |
+
docs = text_splitter.split_documents(documents)
|
27 |
+
return docs
|
28 |
+
|
29 |
+
class FAISSManager:
|
30 |
+
def __init__(self):
|
31 |
+
self.vectorstore_cache = {}
|
32 |
+
|
33 |
+
def build_faiss_index(self, docs):
|
34 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
35 |
+
vectorstore = FAISS.from_documents(docs, embeddings)
|
36 |
+
return vectorstore
|
37 |
+
|
38 |
+
def save_faiss_index(self, vectorstore, file_path):
|
39 |
+
vectorstore.save_local(file_path)
|
40 |
+
print(f"Vectorstore saved to {file_path}")
|
41 |
+
|
42 |
+
def load_faiss_index(self, file_path):
|
43 |
+
if not os.path.exists(f"{file_path}/index.faiss") or not os.path.exists(f"{file_path}/index.pkl"):
|
44 |
+
raise FileNotFoundError(f"Could not find FAISS index or metadata files in {file_path}")
|
45 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
46 |
+
vectorstore = FAISS.load_local(file_path, embeddings, allow_dangerous_deserialization=True)
|
47 |
+
print(f"Vectorstore loaded from {file_path}")
|
48 |
+
return vectorstore
|
49 |
+
|
50 |
+
def build_faiss_index_with_cache_and_file(self, pdf_processor, vectorstore_path):
|
51 |
+
if os.path.exists(vectorstore_path):
|
52 |
+
print(f"Loading vectorstore from file {vectorstore_path}")
|
53 |
+
return self.load_faiss_index(vectorstore_path)
|
54 |
+
|
55 |
+
print(f"Building new vectorstore for {pdf_processor.pdf_path}")
|
56 |
+
docs = pdf_processor.load_and_split_pdf()
|
57 |
+
vectorstore = self.build_faiss_index(docs)
|
58 |
+
self.save_faiss_index(vectorstore, vectorstore_path)
|
59 |
+
return vectorstore
|
60 |
+
|
61 |
+
class LLMChainFactory:
|
62 |
+
def __init__(self, prompt_template):
|
63 |
+
self.prompt_template = prompt_template
|
64 |
+
|
65 |
+
def create_llm_chain(self, llm, max_tokens=80):
|
66 |
+
prompt = PromptTemplate(template=self.prompt_template, input_variables=["documents", "question"])
|
67 |
+
llm_chain = LLMChain(llm=llm, prompt=prompt)
|
68 |
+
llm_chain.llm.max_tokens = max_tokens
|
69 |
+
combine_documents_chain = StuffDocumentsChain(
|
70 |
+
llm_chain=llm_chain,
|
71 |
+
document_variable_name="documents"
|
72 |
+
)
|
73 |
+
return combine_documents_chain
|
74 |
+
|
75 |
+
class LLMManager:
|
76 |
+
def __init__(self, model_path):
|
77 |
+
self.llm = LlamaCpp(model_path=model_path)
|
78 |
+
self.llm.max_tokens = 80
|
79 |
+
|
80 |
+
def create_rag_chain(self, llm_chain_factory, vectorstore):
|
81 |
+
retriever = vectorstore.as_retriever()
|
82 |
+
combine_documents_chain = llm_chain_factory.create_llm_chain(self.llm)
|
83 |
+
qa_chain = RetrievalQA(combine_documents_chain=combine_documents_chain, retriever=retriever)
|
84 |
+
return qa_chain
|
85 |
+
|
86 |
+
def main_rag_pipeline(self, pdf_processor, query, vectorstore_manager, vectorstore_file):
|
87 |
+
vectorstore = vectorstore_manager.build_faiss_index_with_cache_and_file(pdf_processor, vectorstore_file)
|
88 |
+
llm_chain_factory = LLMChainFactory(prompt_template="""You are a helpful AI. Based on the context below, answer the question politely.
|
89 |
+
Context: {documents}
|
90 |
+
Question: {question}
|
91 |
+
Answer:""")
|
92 |
+
rag_chain = self.create_rag_chain(llm_chain_factory, vectorstore)
|
93 |
+
result = rag_chain.run(query)
|
94 |
+
return result
|
95 |
+
|
96 |
+
class WhisperManager:
|
97 |
+
def __init__(self):
|
98 |
+
self.model_id = "openai/whisper-small"
|
99 |
+
self.whisper_model = WhisperForConditionalGeneration.from_pretrained(self.model_id)
|
100 |
+
self.whisper_processor = WhisperProcessor.from_pretrained(self.model_id)
|
101 |
+
self.forced_decoder_ids = self.whisper_processor.get_decoder_prompt_ids(language="english", task="transcribe")
|
102 |
+
|
103 |
+
def transcribe_speech(self, filepath):
|
104 |
+
if not os.path.isfile(filepath):
|
105 |
+
raise ValueError(f"Invalid file path: {filepath}")
|
106 |
+
waveform, sample_rate = torchaudio.load(filepath)
|
107 |
+
target_sample_rate = 16000
|
108 |
+
if sample_rate != target_sample_rate:
|
109 |
+
resampler = T.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)
|
110 |
+
waveform = resampler(waveform)
|
111 |
+
input_features = self.whisper_processor(waveform.squeeze(), sampling_rate=target_sample_rate, return_tensors="pt").input_features
|
112 |
+
generated_ids = self.whisper_model.generate(input_features, forced_decoder_ids=self.forced_decoder_ids)
|
113 |
+
transcribed_text = self.whisper_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
114 |
+
cleaned_text = re.sub(r"<[^>]*>", "", transcribed_text).strip()
|
115 |
+
return cleaned_text
|
116 |
+
|
117 |
+
class SpeechT5Manager:
|
118 |
+
def __init__(self):
|
119 |
+
self.SpeechT5_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
120 |
+
self.SpeechT5_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
121 |
+
self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
122 |
+
self.speaker_embedding_model = AutoModel.from_pretrained("microsoft/speecht5_vc")
|
123 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
124 |
+
self.pretrained_speaker_embeddings = torch.tensor(embeddings_dataset[7000]["xvector"]).unsqueeze(0)
|
125 |
+
|
126 |
+
def text_to_speech(self, text, output_file="output_speechT5.wav"):
|
127 |
+
inputs = self.SpeechT5_processor(text=[text], return_tensors="pt")
|
128 |
+
speech = self.SpeechT5_model.generate_speech(inputs["input_ids"], self.pretrained_speaker_embeddings, vocoder=self.vocoder)
|
129 |
+
sf.write(output_file, speech.numpy(), 16000)
|
130 |
+
return output_file
|
131 |
+
|
132 |
+
# --- Gradio Interface ---
|
133 |
+
def asr_to_text(audio_file):
|
134 |
+
transcribed_text = whisper_manager.transcribe_speech(audio_file)
|
135 |
+
return transcribed_text
|
136 |
+
|
137 |
+
def process_with_llm_and_tts(transcribed_text):
|
138 |
+
response_text = llm_manager.main_rag_pipeline(pdf_processor, transcribed_text, vectorstore_manager, vectorstore_file)
|
139 |
+
audio_output = speech_manager.text_to_speech(response_text)
|
140 |
+
return response_text, audio_output
|
141 |
+
|
142 |
+
# Instantiate Managers
|
143 |
+
pdf_processor = PDFProcessor('./files/LawsoftheGame2024_25.pdf')
|
144 |
+
vectorstore_manager = FAISSManager()
|
145 |
+
llm_manager = LLMManager(model_path="./files/mistral-7b-instruct-v0.2.Q2_K.gguf")
|
146 |
+
whisper_manager = WhisperManager()
|
147 |
+
speech_manager = SpeechT5Manager()
|
148 |
+
vectorstore_file = "./vectorstore_faiss"
|
149 |
+
|
150 |
+
# Define Gradio Interface
|
151 |
+
with gr.Blocks() as demo:
|
152 |
+
gr.Markdown("<h1 style='text-align: center;'>:robot: RAG Powered Voice Assistant :robot:</h1>")
|
153 |
+
gr.Markdown("<h1 style='text-align: center;'>Ask me anything about the rules of Football!</h1>")
|
154 |
+
|
155 |
+
# Step 1: Audio input and ASR output
|
156 |
+
with gr.Row():
|
157 |
+
audio_input = gr.Audio(type="filepath", label="Speak your question")
|
158 |
+
asr_output = gr.Textbox(label="ASR Output (Edit if necessary)", interactive=True)
|
159 |
+
|
160 |
+
# Button to process audio (ASR)
|
161 |
+
asr_button = gr.Button("1 - Transform Voice to Text")
|
162 |
+
|
163 |
+
# Step 2: LLM Response and TTS output
|
164 |
+
with gr.Row():
|
165 |
+
llm_response = gr.Textbox(label="LLM Response")
|
166 |
+
tts_audio_output = gr.Audio(label="TTS Audio")
|
167 |
+
|
168 |
+
# Button to process text with LLM
|
169 |
+
llm_button = gr.Button("2 - Submit Question")
|
170 |
+
|
171 |
+
# When ASR button is clicked, the audio is transcribed
|
172 |
+
asr_button.click(fn=asr_to_text, inputs=audio_input, outputs=asr_output)
|
173 |
+
|
174 |
+
# When LLM button is clicked, the text is processed with the LLM and converted to speech
|
175 |
+
llm_button.click(fn=process_with_llm_and_tts, inputs=asr_output, outputs=[llm_response, tts_audio_output])
|
176 |
+
|
177 |
+
# Disclaimer
|
178 |
+
gr.Markdown(
|
179 |
+
"<p style='text-align: center; color: gray;'>Disclaimer: This application was developed solely for educational purposes to demonstrate AI capabilities and should not be used as a source of information or for any other purpose.</p>"
|
180 |
+
)
|
181 |
+
|
182 |
+
demo.launch(debug=True)
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
libsndfile1
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
langchain-community
|
3 |
+
faiss-cpu
|
4 |
+
llama-cpp-python
|
5 |
+
PyPDF2
|
6 |
+
pypdf
|
7 |
+
sentence-transformers
|
8 |
+
datasets
|
9 |
+
torch
|
10 |
+
torchaudio
|
11 |
+
sentencepiece
|
12 |
+
soundfile
|
13 |
+
gradio
|