|
|
|
import torch |
|
import torchvision |
|
|
|
from torch import nn |
|
from torchvision.models import efficientnet_b0, EfficientNet_B0_Weights |
|
from torchvision.models._api import WeightsEnum |
|
from torch.hub import load_state_dict_from_url |
|
|
|
def create_effnetb0_model(num_classes:int=10, |
|
seed:int=42): |
|
"""Creates an EficientNetB0 feature extractor model and transforms. |
|
|
|
Args: |
|
num_classes (int, optional): number of classes in the classifier head. Defaults to 10. |
|
seed (int, optional): random seed value. Defaults to 42. |
|
|
|
Returns: |
|
model (torch.nn.Module): EffNetB0 feature extractor model. |
|
transforms (torchvision.transforms): EfnetB0 image transforms. |
|
""" |
|
|
|
def get_state_dict(self, *args, **kwargs): |
|
kwargs.pop("check_hash") |
|
return load_state_dict_from_url(self.url, *args, **kwargs) |
|
WeightsEnum.get_state_dict = get_state_dict |
|
|
|
|
|
weights = EfficientNet_B0_Weights.DEFAULT |
|
transforms = weights.transforms() |
|
model = efficientnet_b0(weights=weights) |
|
|
|
|
|
for param in model.features.parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
torch.manual_seed(seed) |
|
model.classifier = nn.Sequential( |
|
nn.Dropout(p=0.3), |
|
nn.Linear(in_features=1280, out_features=num_classes) |
|
) |
|
|
|
return model, transforms |
|
|