Rose commited on
Commit
1e7c928
Β·
1 Parent(s): 5b1af3c

first commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ model_efficientnet_b0.pth filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ### Imports and class names setup ###
3
+ import gradio as gr
4
+ import os
5
+ import torch
6
+
7
+ from model import create_effnetb0_model
8
+ from timeit import default_timer as timer
9
+ from typing import Tuple, Dict
10
+
11
+ # Setup class names
12
+ class_names = ["eugene_h_krabs", "gary_the_snail", "karen_plankton", "mrs_puff", "patrick_star", "pearl_krabs", "sandy_cheeks", "sheldon_j_plankton", "spongebob_squarepants", "squidward_tentacles"]
13
+
14
+ ### Model and transforms preparation ###
15
+ # Create EffNetB0 model
16
+ effnetb0, effnetb0_transforms = create_effnetb0_model(
17
+ num_classes=10
18
+ )
19
+
20
+ # Load saved weights
21
+ effnetb0.load_state_dict(
22
+ torch.load(
23
+ f="model_efficientnet_b0.pth",
24
+ map_location=torch.device("cpu")
25
+ )
26
+ )
27
+
28
+ ### Predict function ###
29
+
30
+ # Create predict function
31
+ def predict(img) -> Tuple[Dict, float]:
32
+ """Transforms and performs a prediction on img and returns prediction and time taken.
33
+ """
34
+ # Start the timer
35
+ start_time = timer()
36
+
37
+ # Transform the target image and add a batch dimension
38
+ img = effnetb0_transforms(img).unsqueeze(dim=0)
39
+
40
+ # Put model into evaluation mode and turn on inference mode
41
+ effnetb0.eval()
42
+ with torch.inference_mode():
43
+ # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
44
+ pred_probs = torch.softmax(effnetb0(img), dim=1)
45
+
46
+ # Create a prediction label and prediction probability dictionary for each prediction class (required format for Gradio's output parameter)
47
+ pred_labels_and_probs = {class_names[i]:float(pred_probs[0][i]) for i in range(len(class_names))}
48
+
49
+ # Calculate the prediction time
50
+ pred_time = round(timer() - start_time)
51
+
52
+ # Return the prediction dictionary and prediction time
53
+ return pred_labels_and_probs, pred_time
54
+
55
+ ### Gradio app ###
56
+ title = "Spongebob Character Identifier πŸ§½πŸ‘–πŸ™πŸ¦€πŸΏοΈπŸπŸ”πŸ³πŸ–₯️"
57
+ description = "An EfficientNetB0 feature extractor computer vision model to classify between 10 character from Spongebob Squarepants: Spongebob, Patrick, Squidward, Gary, Mr. Krabs, Mrs.Puff, Sandy, Plankton, Karen, and Pearl"
58
+ article = "Read more at: [Spongebob Character Identifier](https://gulnuravci.github.io/scripts/project_pages/spongebob_identifier.html)"
59
+
60
+ # Create examples list from "examples/" directory
61
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
62
+
63
+ demo = gr.Interface(fn=predict, # mapping function from input to output
64
+ inputs=gr.Image(type="pil"), # what are the inputs?
65
+ outputs=[gr.Label(num_top_classes=10, label="Predictions"), # what are the outputs?
66
+ gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
67
+ examples=example_list,
68
+ title=title,
69
+ description=description,
70
+ article=article)
71
+
72
+ demo.launch()
examples/gary_the_snail_54.jpg ADDED
examples/pearl_krabs_45.jpg ADDED
examples/squidward_tentacles_101.jpg ADDED
model.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torchvision
4
+
5
+ from torch import nn
6
+ from torchvision.models import efficientnet_b0, EfficientNet_B0_Weights
7
+ from torchvision.models._api import WeightsEnum
8
+ from torch.hub import load_state_dict_from_url
9
+
10
+ def create_effnetb0_model(num_classes:int=10,
11
+ seed:int=42):
12
+ """Creates an EficientNetB0 feature extractor model and transforms.
13
+
14
+ Args:
15
+ num_classes (int, optional): number of classes in the classifier head. Defaults to 10.
16
+ seed (int, optional): random seed value. Defaults to 42.
17
+
18
+ Returns:
19
+ model (torch.nn.Module): EffNetB0 feature extractor model.
20
+ transforms (torchvision.transforms): EfnetB0 image transforms.
21
+ """
22
+ # Fix for wrong hash error from: https://github.com/pytorch/vision/issues/7744
23
+ def get_state_dict(self, *args, **kwargs):
24
+ kwargs.pop("check_hash")
25
+ return load_state_dict_from_url(self.url, *args, **kwargs)
26
+ WeightsEnum.get_state_dict = get_state_dict
27
+
28
+ # Create EffNetB0 pretrained weights, transforms and model
29
+ weights = EfficientNet_B0_Weights.DEFAULT
30
+ transforms = weights.transforms()
31
+ model = efficientnet_b0(weights=weights)
32
+
33
+ # Freeze all layers in base model
34
+ for param in model.features.parameters():
35
+ param.requires_grad = False
36
+
37
+ # Change the classifier head with random seed for reproducibility
38
+ torch.manual_seed(seed)
39
+ model.classifier = nn.Sequential(
40
+ nn.Dropout(p=0.3),
41
+ nn.Linear(in_features=1408, out_features=num_classes)
42
+ )
43
+
44
+ return model, transforms
model_efficientnet_b0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3196ec7d7bbd0b7d39f047edfbcd0e3e279a7937f312ce0416fa7961cc4669f
3
+ size 16384522
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch>=1.12.0
2
+ torchvision>=0.13.0
3
+ gradio>=3.1.4