### Imports and class names setup ### import gradio as gr import os import torch from model import create_effnetb0_model from timeit import default_timer as timer from typing import Tuple, Dict # Setup class names class_names = ["eugene_h_krabs", "gary_the_snail", "karen_plankton", "mrs_puff", "patrick_star", "pearl_krabs", "sandy_cheeks", "sheldon_j_plankton", "spongebob_squarepants", "squidward_tentacles"] ### Model and transforms preparation ### # Create EffNetB0 model effnetb0, effnetb0_transforms = create_effnetb0_model( num_classes=10 ) # Load saved weights effnetb0.load_state_dict( torch.load( f="model_efficientnet_b0.pth", map_location=torch.device("cpu") ) ) ### Predict function ### # Create predict function def predict(img) -> Tuple[Dict, float]: """Transforms and performs a prediction on img and returns prediction and time taken. """ # Start the timer start_time = timer() # Transform the target image and add a batch dimension img = effnetb0_transforms(img).unsqueeze(dim=0) # Put model into evaluation mode and turn on inference mode effnetb0.eval() with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logits into prediction probabilities pred_probs = torch.softmax(effnetb0(img), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class (required format for Gradio's output parameter) pred_labels_and_probs = {class_names[i]:float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate the prediction time pred_time = round(timer() - start_time) # Return the prediction dictionary and prediction time return pred_labels_and_probs, pred_time ### Gradio app ### title = "Spongebob Character Identifier 🧽👖🐙🦀🐿️🍍🍔🐳🖥️" description = "An EfficientNetB0 feature extractor computer vision model to classify between 10 character from Spongebob Squarepants: Spongebob, Patrick, Squidward, Gary, Mr. Krabs, Mrs.Puff, Sandy, Plankton, Karen, and Pearl" article = "Read more at: [Spongebob Character Identifier](https://gulnuravci.github.io/scripts/project_pages/spongebob_character_identifier/spongebob_identifier.html)" # Create examples list from "examples/" directory example_list = [["examples/" + example] for example in os.listdir("examples")] demo = gr.Interface(fn=predict, # mapping function from input to output inputs=gr.Image(type="pil"), # what are the inputs? outputs=[gr.Label(num_top_classes=10, label="Predictions"), # what are the outputs? gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs examples=example_list, title=title, description=description, article=article) demo.launch()