import torch import torchvision from torch import nn from torchvision.models import efficientnet_b0, EfficientNet_B0_Weights from torchvision.models._api import WeightsEnum from torch.hub import load_state_dict_from_url def create_effnetb0_model(num_classes:int=10, seed:int=42): """Creates an EficientNetB0 feature extractor model and transforms. Args: num_classes (int, optional): number of classes in the classifier head. Defaults to 10. seed (int, optional): random seed value. Defaults to 42. Returns: model (torch.nn.Module): EffNetB0 feature extractor model. transforms (torchvision.transforms): EfnetB0 image transforms. """ # Fix for wrong hash error from: https://github.com/pytorch/vision/issues/7744 def get_state_dict(self, *args, **kwargs): kwargs.pop("check_hash") return load_state_dict_from_url(self.url, *args, **kwargs) WeightsEnum.get_state_dict = get_state_dict # Create EffNetB0 pretrained weights, transforms and model weights = EfficientNet_B0_Weights.DEFAULT transforms = weights.transforms() model = efficientnet_b0(weights=weights) # Freeze all layers in base model for param in model.features.parameters(): param.requires_grad = False # Change the classifier head with random seed for reproducibility torch.manual_seed(seed) model.classifier = nn.Sequential( nn.Dropout(p=0.3), nn.Linear(in_features=1280, out_features=num_classes) ) return model, transforms