ua-thesis-absa / app.py
gundruke's picture
Update app.py
c4d3f75
raw
history blame
4.69 kB
import gradio as gr
import torch
import json
from nltk.corpus import wordnet
from transformers import AutoConfig, AutoTokenizer
from models import BERTLstmCRF
from huggingface_hub import hf_hub_download
import os
import nltk
os.system("python -m nltk.downloader all")
checkpoint = "gundruke/bert-lstm-crf-absa"
config = AutoConfig.from_pretrained(checkpoint)
id2label = config.id2label
tokenizer = AutoTokenizer.from_pretrained("gundruke/bert-lstm-crf-absa")
model = BERTLstmCRF(config)
repo = "gundruke/bert-lstm-crf-absa"
filename = "pytorch_model.bin"
model.load_state_dict(torch.load(hf_hub_download(repo_id=repo, filename=filename),
map_location=torch.device('cpu')))
dictionary_file_path = hf_hub_download(repo_id=repo, filename="dictionary.json")
def tokenize_text(text):
tokens = tokenizer.tokenize(text)
tokenized_text = tokenizer(text)
return tokens, tokenized_text
def convert_to_multilabel(label_list):
multilabel = []
if "B-POS" in label_list or "I-POS" in label_list:
multilabel.append("Positive")
if "B-NEG" in label_list or "I-NEG" in label_list:
multilabel.append("Negative")
if "B-NEU" in label_list or "I-NEU" in label_list:
multilabel.append("Neutral")
return " and ".join(multilabel)
def classify_word(word, dictionary):
synsets = wordnet.synsets(word)
if synsets:
hypernyms = synsets[0].hypernyms() # Get the hypernym of the first synset
if hypernyms:
nltk_result = hypernyms[0].lemmas()[0].name()
else:
nltk_result = "Unknown"
else:
nltk_result = "Unknown"
if word in dictionary:
result = dictionary[word]
elif nltk_result in ['atmosphere', 'drinks', 'food', 'price', 'service']:
result = nltk_result
else:
result = 'other'
return result, nltk_result
def get_outputs(tokenized_text):
input_ids = tokenized_text["input_ids"]
token_type_ids = tokenized_text["token_type_ids"]
attention_mask = tokenized_text["attention_mask"]
inputs = {
'input_ids': torch.tensor([input_ids]),
'token_type_ids': torch.tensor([token_type_ids]),
'attention_mask': torch.tensor([attention_mask])
}
with torch.no_grad():
outputs = model(**inputs)
labels = [id2label.get(i) for i in torch.flatten(outputs[1]).tolist()][1:-1]
return labels
def join_wordpieces(tokens, labels):
joined_tokens = []
for token, label in zip(tokens, labels):
if label == "O":
label = None
if token.startswith("##"):
last_token = joined_tokens[-1][0]
joined_tokens[-1] = (last_token+token[2:], label)
else:
joined_tokens.append((token, label))
return joined_tokens
def get_category(word, dict_file):
with open(dict_file, "r") as file:
dictionary = json.load(file)
r, n = classify_word(word, dictionary)
return r
def text_analysis(text):
tokens, tokenized_text = tokenize_text(text)
labels = get_outputs(tokenized_text)
multilabel = convert_to_multilabel(labels)
token_tuple = join_wordpieces(tokens, labels)
tokenized_text["tokens"] = tokens
categories = []
for tok in token_tuple:
if tok[1]:
categories.append((tok[0], get_category(tok[0], dictionary_file_path)))
else:
categories.append((tok[0], None))
return token_tuple, multilabel, categories
theme = gr.themes.Base()
with gr.Blocks(theme=theme) as demo:
with gr.Column():
input_textbox = gr.Textbox(placeholder="Enter sentence here...")
btn = gr.Button("Submit", variant="primary")
btn.click(fn=text_analysis,
inputs=input_textbox,
outputs=[gr.HighlightedText(label="Token labels"),
gr.Label(label="Multilabel classification"),
gr.HighlightedText(label="Category")],
queue=False)
with gr.Column():
examples=[
["I've been coming here as a child and always come back for the taste."],
["The tea is great and all the sweets are homemade."],
["Strong build which really adds to its durability but poor battery life."],
["We loved the recommendation for the wine, and I think the eggplant parmigiana appetizer should become an entree."],
["chicken pasta was tasty, wine was super nice but waiter was rude."]
]
gr.Examples(examples, input_textbox)
demo.launch(debug=True)