guneetsk99 commited on
Commit
c96f9f5
1 Parent(s): c34de73

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -59
app.py CHANGED
@@ -1,64 +1,39 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoProcessor, AutoModelForImageTextToText
3
+ import torch
4
+ from PIL import Image
5
+
6
+ # Load the processor and model
7
+ processor = AutoProcessor.from_pretrained("guneetsk99/finance_qwen_VL_7B")
8
+ model = AutoModelForImageTextToText.from_pretrained("guneetsk99/finance_qwen_VL_7B")
9
+
10
+ def predict(input_img, text_prompt):
11
+ # Preprocess the image and text prompt
12
+ inputs = processor(images=input_img, text=text_prompt, return_tensors="pt").to(model.device)
13
+
14
+ # Generate predictions using the model
15
+ with torch.no_grad():
16
+ outputs = model.generate(**inputs, max_new_tokens=50)
17
+
18
+ # Decode the generated text
19
+ generated_text = processor.decode(outputs[0], skip_special_tokens=True)
20
+
21
+ return input_img, generated_text
22
+
23
+ # Create the Gradio interface
24
+ gradio_app = gr.Interface(
25
+ fn=predict,
26
+ inputs=[
27
+ gr.Image(label="Upload Image", source="upload", type="pil"),
28
+ gr.Textbox(label="Text Prompt", placeholder="Enter a text prompt, e.g., 'Describe this image.'"),
29
+ ],
30
+ outputs=[
31
+ gr.Image(label="Uploaded Image"),
32
+ gr.Textbox(label="Generated Response"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  ],
34
+ title="Finance Image-to-Text Model",
35
+ description="Upload a financial document image and provide a text prompt for the model to process the image and generate a text response.",
36
  )
37
 
 
38
  if __name__ == "__main__":
39
+ gradio_app.launch()