Spaces:
Runtime error
Runtime error
guneetsk99
commited on
Commit
•
c96f9f5
1
Parent(s):
c34de73
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Load the processor and model
|
7 |
+
processor = AutoProcessor.from_pretrained("guneetsk99/finance_qwen_VL_7B")
|
8 |
+
model = AutoModelForImageTextToText.from_pretrained("guneetsk99/finance_qwen_VL_7B")
|
9 |
+
|
10 |
+
def predict(input_img, text_prompt):
|
11 |
+
# Preprocess the image and text prompt
|
12 |
+
inputs = processor(images=input_img, text=text_prompt, return_tensors="pt").to(model.device)
|
13 |
+
|
14 |
+
# Generate predictions using the model
|
15 |
+
with torch.no_grad():
|
16 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
17 |
+
|
18 |
+
# Decode the generated text
|
19 |
+
generated_text = processor.decode(outputs[0], skip_special_tokens=True)
|
20 |
+
|
21 |
+
return input_img, generated_text
|
22 |
+
|
23 |
+
# Create the Gradio interface
|
24 |
+
gradio_app = gr.Interface(
|
25 |
+
fn=predict,
|
26 |
+
inputs=[
|
27 |
+
gr.Image(label="Upload Image", source="upload", type="pil"),
|
28 |
+
gr.Textbox(label="Text Prompt", placeholder="Enter a text prompt, e.g., 'Describe this image.'"),
|
29 |
+
],
|
30 |
+
outputs=[
|
31 |
+
gr.Image(label="Uploaded Image"),
|
32 |
+
gr.Textbox(label="Generated Response"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
],
|
34 |
+
title="Finance Image-to-Text Model",
|
35 |
+
description="Upload a financial document image and provide a text prompt for the model to process the image and generate a text response.",
|
36 |
)
|
37 |
|
|
|
38 |
if __name__ == "__main__":
|
39 |
+
gradio_app.launch()
|