Spaces:
Build error
Build error
File size: 7,420 Bytes
0223854 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import argparse
import datetime
import inspect
import os
from omegaconf import OmegaConf
import torch
import diffusers
from diffusers import AutoencoderKL, DDIMScheduler
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from animatediff.models.unet import UNet3DConditionModel
from animatediff.pipelines.pipeline_animation import AnimationPipeline
from animatediff.utils.util import save_videos_grid
from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
from animatediff.utils.convert_lora_safetensor_to_diffusers import convert_lora
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange, repeat
import csv, pdb, glob
from safetensors import safe_open
import math
from pathlib import Path
def main(args):
*_, func_args = inspect.getargvalues(inspect.currentframe())
func_args = dict(func_args)
time_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
savedir = f"samples/{Path(args.config).stem}-{time_str}"
os.makedirs(savedir)
inference_config = OmegaConf.load(args.inference_config)
config = OmegaConf.load(args.config)
samples = []
sample_idx = 0
for model_idx, (config_key, model_config) in enumerate(list(config.items())):
motion_modules = model_config.motion_module
motion_modules = [motion_modules] if isinstance(motion_modules, str) else list(motion_modules)
for motion_module in motion_modules:
### >>> create validation pipeline >>> ###
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae")
unet = UNet3DConditionModel.from_pretrained_2d(args.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
if is_xformers_available(): unet.enable_xformers_memory_efficient_attention()
else: assert False
pipeline = AnimationPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)),
).to("cuda")
# 1. unet ckpt
# 1.1 motion module
motion_module_state_dict = torch.load(motion_module, map_location="cpu")
if "global_step" in motion_module_state_dict: func_args.update({"global_step": motion_module_state_dict["global_step"]})
missing, unexpected = pipeline.unet.load_state_dict(motion_module_state_dict, strict=False)
assert len(unexpected) == 0
# 1.2 T2I
if model_config.path != "":
if model_config.path.endswith(".ckpt"):
state_dict = torch.load(model_config.path)
pipeline.unet.load_state_dict(state_dict)
elif model_config.path.endswith(".safetensors"):
state_dict = {}
with safe_open(model_config.path, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
is_lora = all("lora" in k for k in state_dict.keys())
if not is_lora:
base_state_dict = state_dict
else:
base_state_dict = {}
with safe_open(model_config.base, framework="pt", device="cpu") as f:
for key in f.keys():
base_state_dict[key] = f.get_tensor(key)
# vae
converted_vae_checkpoint = convert_ldm_vae_checkpoint(base_state_dict, pipeline.vae.config)
pipeline.vae.load_state_dict(converted_vae_checkpoint)
# unet
converted_unet_checkpoint = convert_ldm_unet_checkpoint(base_state_dict, pipeline.unet.config)
pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False)
# text_model
pipeline.text_encoder = convert_ldm_clip_checkpoint(base_state_dict)
# import pdb
# pdb.set_trace()
if is_lora:
pipeline = convert_lora(pipeline, state_dict, alpha=model_config.lora_alpha)
pipeline.to("cuda")
### <<< create validation pipeline <<< ###
prompts = model_config.prompt
n_prompts = list(model_config.n_prompt) * len(prompts) if len(model_config.n_prompt) == 1 else model_config.n_prompt
random_seeds = model_config.get("seed", [-1])
random_seeds = [random_seeds] if isinstance(random_seeds, int) else list(random_seeds)
random_seeds = random_seeds * len(prompts) if len(random_seeds) == 1 else random_seeds
config[config_key].random_seed = []
for prompt_idx, (prompt, n_prompt, random_seed) in enumerate(zip(prompts, n_prompts, random_seeds)):
# manually set random seed for reproduction
if random_seed != -1: torch.manual_seed(random_seed)
else: torch.seed()
config[config_key].random_seed.append(torch.initial_seed())
print(f"current seed: {torch.initial_seed()}")
print(f"sampling {prompt} ...")
sample = pipeline(
prompt,
negative_prompt = n_prompt,
num_inference_steps = model_config.steps,
guidance_scale = model_config.guidance_scale,
width = args.W,
height = args.H,
video_length = args.L,
).videos
samples.append(sample)
prompt = "-".join((prompt.replace("/", "").split(" ")[:10]))
save_videos_grid(sample, f"{savedir}/sample/{sample_idx}-{prompt}.gif")
print(f"save to {savedir}/sample/{prompt}.gif")
sample_idx += 1
samples = torch.concat(samples)
save_videos_grid(samples, f"{savedir}/sample.gif", n_rows=4)
OmegaConf.save(config, f"{savedir}/config.yaml")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_model_path", type=str, default="models/StableDiffusion/stable-diffusion-v1-5",)
parser.add_argument("--inference_config", type=str, default="configs/inference/inference.yaml")
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--L", type=int, default=16 )
parser.add_argument("--W", type=int, default=512)
parser.add_argument("--H", type=int, default=512)
args = parser.parse_args()
main(args)
|