gupta1912 commited on
Commit
be1fc2e
·
1 Parent(s): 94dbf63

added files related to space

Browse files
README.md CHANGED
@@ -1,12 +1,30 @@
1
  ---
2
- title: StableDiffusion
3
  emoji: 🐠
4
- colorFrom: gray
5
  colorTo: pink
6
  sdk: gradio
7
  sdk_version: 3.47.1
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: S20 ERA Phase I Stable Diffusion
3
  emoji: 🐠
4
+ colorFrom: purple
5
  colorTo: pink
6
  sdk: gradio
7
  sdk_version: 3.47.1
8
  app_file: app.py
9
  pinned: false
10
+ license: mit
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
+
15
+
16
+ # Session 20 - ERA Phase I - Assignment
17
+ ## Goals
18
+ 1. Build app on HuggingFace showing Stable Diffusion, Textual Inversion
19
+
20
+ ## Usage
21
+ In the App tab, the UI is present for different functionalities like:
22
+ 1. Writing a prompt and selecting an image style
23
+ 2. Seeing Stable Diffusion results for the selected style
24
+ 3. Variety of examples given
25
+
26
+ Contributors
27
+ -------------------------
28
+ Lavanya Nemani
29
+
30
+ Shashank Gupta
app.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from base64 import b64encode
2
+
3
+ import numpy
4
+ import torch
5
+ from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
6
+ from huggingface_hub import notebook_login
7
+
8
+ # For video display:
9
+ from matplotlib import pyplot as plt
10
+ from pathlib import Path
11
+ from PIL import Image
12
+ from torch import autocast
13
+ from torchvision import transforms as tfms
14
+ from tqdm.auto import tqdm
15
+ from transformers import CLIPTextModel, CLIPTokenizer, logging
16
+ import os
17
+ import numpy as np
18
+
19
+ torch.manual_seed(1)
20
+ # if not (Path.home()/'.cache/huggingface'/'token').exists(): notebook_login()
21
+
22
+ # Supress some unnecessary warnings when loading the CLIPTextModel
23
+ logging.set_verbosity_error()
24
+
25
+ # Set device
26
+ torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
27
+
28
+ # Load the autoencoder model which will be used to decode the latents into image space.
29
+ vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
30
+
31
+ # Load the tokenizer and text encoder to tokenize and encode the text.
32
+ tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
33
+ text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
34
+
35
+ # The UNet model for generating the latents.
36
+ unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
37
+
38
+ # The noise scheduler
39
+ scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
40
+
41
+ # To the GPU we go!
42
+ vae = vae.to(torch_device)
43
+ text_encoder = text_encoder.to(torch_device)
44
+ unet = unet.to(torch_device)
45
+ token_emb_layer = text_encoder.text_model.embeddings.token_embedding
46
+ pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
47
+
48
+ position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
49
+ position_embeddings = pos_emb_layer(position_ids)
50
+
51
+
52
+ def get_output_embeds(input_embeddings):
53
+ # CLIP's text model uses causal mask, so we prepare it here:
54
+ bsz, seq_len = input_embeddings.shape[:2]
55
+ causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
56
+
57
+ # Getting the output embeddings involves calling the model with passing output_hidden_states=True
58
+ # so that it doesn't just return the pooled final predictions:
59
+ encoder_outputs = text_encoder.text_model.encoder(
60
+ inputs_embeds=input_embeddings,
61
+ attention_mask=None, # We aren't using an attention mask so that can be None
62
+ causal_attention_mask=causal_attention_mask.to(torch_device),
63
+ output_attentions=None,
64
+ output_hidden_states=True, # We want the output embs not the final output
65
+ return_dict=None,
66
+ )
67
+
68
+ # We're interested in the output hidden state only
69
+ output = encoder_outputs[0]
70
+
71
+ # There is a final layer norm we need to pass these through
72
+ output = text_encoder.text_model.final_layer_norm(output)
73
+
74
+ # And now they're ready!
75
+ return output
76
+
77
+
78
+ def set_timesteps(scheduler, num_inference_steps):
79
+ scheduler.set_timesteps(num_inference_steps)
80
+ scheduler.timesteps = scheduler.timesteps.to(torch.float32)
81
+
82
+ def pil_to_latent(input_im):
83
+ # Single image -> single latent in a batch (so size 1, 4, 64, 64)
84
+ with torch.no_grad():
85
+ latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
86
+ return 0.18215 * latent.latent_dist.sample()
87
+
88
+ def latents_to_pil(latents):
89
+ # bath of latents -> list of images
90
+ latents = (1 / 0.18215) * latents
91
+ with torch.no_grad():
92
+ image = vae.decode(latents).sample
93
+ image = (image / 2 + 0.5).clamp(0, 1)
94
+ image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
95
+ images = (image * 255).round().astype("uint8")
96
+ pil_images = [Image.fromarray(image) for image in images]
97
+ return pil_images
98
+
99
+
100
+ def generate_with_embs(text_embeddings, text_input, seed):
101
+
102
+ height = 512 # default height of Stable Diffusion
103
+ width = 512 # default width of Stable Diffusion
104
+ num_inference_steps = 10 # Number of denoising steps
105
+ guidance_scale = 7.5 # Scale for classifier-free guidance
106
+ generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
107
+ batch_size = 1
108
+
109
+ max_length = text_input.input_ids.shape[-1]
110
+ uncond_input = tokenizer(
111
+ [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
112
+ )
113
+ with torch.no_grad():
114
+ uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
115
+ text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
116
+
117
+ # Prep Scheduler
118
+ set_timesteps(scheduler, num_inference_steps)
119
+
120
+ # Prep latents
121
+ latents = torch.randn(
122
+ (batch_size, unet.in_channels, height // 8, width // 8),
123
+ generator=generator,
124
+ )
125
+ latents = latents.to(torch_device)
126
+ latents = latents * scheduler.init_noise_sigma
127
+
128
+ # Loop
129
+ for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
130
+ # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
131
+ latent_model_input = torch.cat([latents] * 2)
132
+ sigma = scheduler.sigmas[i]
133
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
134
+
135
+ # predict the noise residual
136
+ with torch.no_grad():
137
+ noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
138
+
139
+ # perform guidance
140
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
141
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
142
+
143
+ # compute the previous noisy sample x_t -> x_t-1
144
+ latents = scheduler.step(noise_pred, t, latents).prev_sample
145
+
146
+ return latents_to_pil(latents)[0]
147
+
148
+
149
+ def generate_with_prompt_style(prompt, style, seed = 42):
150
+
151
+ prompt = prompt + ' in style of s'
152
+ embed = torch.load(style)
153
+
154
+ text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
155
+ # for t in text_input['input_ids'][0][:20]: # We'll just look at the first 7 to save you from a wall of '<|endoftext|>'
156
+ # print(t, tokenizer.decoder.get(int(t)))
157
+ input_ids = text_input.input_ids.to(torch_device)
158
+
159
+ token_embeddings = token_emb_layer(input_ids)
160
+ # The new embedding - our special birb word
161
+ replacement_token_embedding = embed[list(embed.keys())[0]].to(torch_device)
162
+
163
+ # Insert this into the token embeddings
164
+ token_embeddings[0, torch.where(input_ids[0]==338)] = replacement_token_embedding.to(torch_device)
165
+
166
+ # Combine with pos embs
167
+ input_embeddings = token_embeddings + position_embeddings
168
+
169
+ # Feed through to get final output embs
170
+ modified_output_embeddings = get_output_embeds(input_embeddings)
171
+
172
+ # And generate an image with this:
173
+ return generate_with_embs(modified_output_embeddings, text_input, seed)
174
+
175
+
176
+ import torch
177
+
178
+ def contrast_loss(images):
179
+ variance = torch.var(images)
180
+ return -variance
181
+
182
+ def generate_with_prompt_style_guidance(prompt, style, seed=42):
183
+
184
+ prompt = prompt + ' in style of s'
185
+
186
+ embed = torch.load(style)
187
+
188
+ height = 512 # default height of Stable Diffusion
189
+ width = 512 # default width of Stable Diffusion
190
+ num_inference_steps = 10 # # Number of denoising steps
191
+ guidance_scale = 8 # # Scale for classifier-free guidance
192
+ generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
193
+ batch_size = 1
194
+ contrast_loss_scale = 200 #
195
+
196
+ # Prep text
197
+ text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
198
+ with torch.no_grad():
199
+ text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
200
+
201
+ input_ids = text_input.input_ids.to(torch_device)
202
+
203
+ # Get token embeddings
204
+ token_embeddings = token_emb_layer(input_ids)
205
+
206
+ # The new embedding - our special birb word
207
+ replacement_token_embedding = embed[list(embed.keys())[0]].to(torch_device)
208
+
209
+ # Insert this into the token embeddings
210
+ token_embeddings[0, torch.where(input_ids[0]==338)] = replacement_token_embedding.to(torch_device)
211
+
212
+ # Combine with pos embs
213
+ input_embeddings = token_embeddings + position_embeddings
214
+
215
+ # Feed through to get final output embs
216
+ modified_output_embeddings = get_output_embeds(input_embeddings)
217
+
218
+ # And the uncond. input as before:
219
+ max_length = text_input.input_ids.shape[-1]
220
+ uncond_input = tokenizer(
221
+ [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
222
+ )
223
+ with torch.no_grad():
224
+ uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
225
+
226
+ text_embeddings = torch.cat([uncond_embeddings, modified_output_embeddings])
227
+
228
+ # Prep Scheduler
229
+ scheduler.set_timesteps(num_inference_steps)
230
+
231
+ # Prep latents
232
+ latents = torch.randn(
233
+ (batch_size, unet.config.in_channels, height // 8, width // 8),
234
+ generator=generator,
235
+ )
236
+ latents = latents.to(torch_device)
237
+ latents = latents * scheduler.init_noise_sigma
238
+
239
+ # Loop
240
+ for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
241
+ # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
242
+ latent_model_input = torch.cat([latents] * 2)
243
+ sigma = scheduler.sigmas[i]
244
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
245
+
246
+ # predict the noise residual
247
+ with torch.no_grad():
248
+ noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
249
+
250
+ # perform CFG
251
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
252
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
253
+
254
+ #### ADDITIONAL GUIDANCE ###
255
+ if i%5 == 0:
256
+ # Requires grad on the latents
257
+ latents = latents.detach().requires_grad_()
258
+
259
+ # Get the predicted x0:
260
+ latents_x0 = latents - sigma * noise_pred
261
+ # latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
262
+
263
+ # Decode to image space
264
+ denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
265
+
266
+ # Calculate loss
267
+ loss = contrast_loss(denoised_images) * contrast_loss_scale
268
+
269
+ # # Occasionally print it out
270
+ # if i%10==0:
271
+ # print(i, 'loss:', loss.item())
272
+
273
+ # Get gradient
274
+ cond_grad = torch.autograd.grad(loss, latents)[0]
275
+
276
+ # Modify the latents based on this gradient
277
+ latents = latents.detach() - cond_grad * sigma**2
278
+
279
+ # Now step with scheduler
280
+ latents = scheduler.step(noise_pred, t, latents).prev_sample
281
+
282
+
283
+ return latents_to_pil(latents)[0]
284
+
285
+
286
+ import gradio as gr
287
+
288
+ dict_styles = {'Arcane':'styles/learned_embeds_arcane.bin',
289
+ 'Button eyes':'styles/learned_embeds_buttoneyes.bin',
290
+ 'Dr Strange': 'styles/learned_embeds_dr_strange.bin',
291
+ 'GTA-5':'styles/learned_embeds_gta5.bin',
292
+ 'Illustration': 'styles/learned_embeds_illustration.bin',
293
+ 'Manga':'styles/learned_embeds_manga.bin',
294
+ 'Matrix':'styles/learned_embeds_matrix.bin',
295
+ 'Oil Painting':'styles/learned_embeds_oil.bin',
296
+ 'Pokemon':'styles/learned_embeds_pokemon.bin',
297
+ 'Stripes': 'styles/learned_embeds_stripe.bin'}
298
+ # dict_styles.keys()
299
+
300
+ def inference(prompt, style):
301
+
302
+ if prompt is not None and style is not None:
303
+ style = dict_styles[style]
304
+ result = generate_with_prompt_style_guidance(prompt, style)
305
+ return np.array(result)
306
+ else:
307
+ return None
308
+
309
+ title = "Stable Diffusion and Textual Inversion"
310
+ description = "A simple Gradio interface to stylize Stable Diffusion outputs"
311
+ examples = [['A man sipping wine wearing a spacesuit on the moon', 'Stripes']]
312
+
313
+ demo = gr.Interface(inference,
314
+ inputs = [gr.Textbox(label='Prompt'),
315
+ gr.Dropdown(['Arcane', 'Button eyes', 'Dr Strange', 'GTA-5', 'Illustration',
316
+ 'Manga', 'Matrix', 'Oil Painting', 'Pokemon', 'Stripes'], label='Style')
317
+ ],
318
+ outputs = [
319
+ gr.Image(label="Stable Diffusion Output"),
320
+ ],
321
+ title = title,
322
+ description = description,
323
+ # examples = examples,
324
+ # cache_examples=True
325
+ )
326
+ demo.launch()
327
+
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ transformers==4.25.1
3
+ diffusers
4
+ ftfy
5
+ torchvision
6
+ tqdm
7
+ numpy
8
+ accelerate
9
+ scipy
10
+ Pillow
styles/learned_embeds_arcane.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61d37c394fbeee79b296cf10101032280b501bdef78d655f76d767c784742880
3
+ size 3819
styles/learned_embeds_buttoneyes.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70431a97baff1d4c591b9a1ba71b09764e19a8388666fabf9c5fcfe961102da8
3
+ size 3819
styles/learned_embeds_dr_strange.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b6b774ecebb94ddd9b04e16eb76db8203708b7ff4f432c0f4f563be1d411e53
3
+ size 3819
styles/learned_embeds_gta5.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e58b1a7e49aaf5122d2959a248c2e73d66da7e858871676a7094bdfb1fb962f
3
+ size 3819
styles/learned_embeds_illustration.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44d65046c071e37f75f31a7a81a34c50a96080e8a3aedc7cda1094dae5d385f0
3
+ size 3819
styles/learned_embeds_manga.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83f11ec9967b9cd81670104504b70db47b2fb77265bb3a4defba98b6cff17edf
3
+ size 3819
styles/learned_embeds_matrix.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b84b50aad5f237f0639cf7d705a66d33b3da5e4e285161fb5084187648f3b0c
3
+ size 3840
styles/learned_embeds_oil.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:754d7d9c1fcdc7e05fd273f21e77b05bc89a4ba25415d24de1286f1fbdf9e0c7
3
+ size 3840
styles/learned_embeds_pokemon.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:802ac8a61383f147dae01390ff23ca040165b59b17ffc9a9bd172541c4c0e1cc
3
+ size 3819
styles/learned_embeds_stripe.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1642fabeef65edb374857553e75dae1f6ec8ab3aeba634d0a026f836e8cc4db
3
+ size 3840