Spaces:
Sleeping
Sleeping
added files related to space
Browse files- README.md +20 -2
- app.py +327 -0
- requirements.txt +10 -0
- styles/learned_embeds_arcane.bin +3 -0
- styles/learned_embeds_buttoneyes.bin +3 -0
- styles/learned_embeds_dr_strange.bin +3 -0
- styles/learned_embeds_gta5.bin +3 -0
- styles/learned_embeds_illustration.bin +3 -0
- styles/learned_embeds_manga.bin +3 -0
- styles/learned_embeds_matrix.bin +3 -0
- styles/learned_embeds_oil.bin +3 -0
- styles/learned_embeds_pokemon.bin +3 -0
- styles/learned_embeds_stripe.bin +3 -0
README.md
CHANGED
@@ -1,12 +1,30 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🐠
|
4 |
-
colorFrom:
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.47.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: S20 ERA Phase I Stable Diffusion
|
3 |
emoji: 🐠
|
4 |
+
colorFrom: purple
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.47.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
|
16 |
+
# Session 20 - ERA Phase I - Assignment
|
17 |
+
## Goals
|
18 |
+
1. Build app on HuggingFace showing Stable Diffusion, Textual Inversion
|
19 |
+
|
20 |
+
## Usage
|
21 |
+
In the App tab, the UI is present for different functionalities like:
|
22 |
+
1. Writing a prompt and selecting an image style
|
23 |
+
2. Seeing Stable Diffusion results for the selected style
|
24 |
+
3. Variety of examples given
|
25 |
+
|
26 |
+
Contributors
|
27 |
+
-------------------------
|
28 |
+
Lavanya Nemani
|
29 |
+
|
30 |
+
Shashank Gupta
|
app.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from base64 import b64encode
|
2 |
+
|
3 |
+
import numpy
|
4 |
+
import torch
|
5 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
6 |
+
from huggingface_hub import notebook_login
|
7 |
+
|
8 |
+
# For video display:
|
9 |
+
from matplotlib import pyplot as plt
|
10 |
+
from pathlib import Path
|
11 |
+
from PIL import Image
|
12 |
+
from torch import autocast
|
13 |
+
from torchvision import transforms as tfms
|
14 |
+
from tqdm.auto import tqdm
|
15 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
16 |
+
import os
|
17 |
+
import numpy as np
|
18 |
+
|
19 |
+
torch.manual_seed(1)
|
20 |
+
# if not (Path.home()/'.cache/huggingface'/'token').exists(): notebook_login()
|
21 |
+
|
22 |
+
# Supress some unnecessary warnings when loading the CLIPTextModel
|
23 |
+
logging.set_verbosity_error()
|
24 |
+
|
25 |
+
# Set device
|
26 |
+
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
27 |
+
|
28 |
+
# Load the autoencoder model which will be used to decode the latents into image space.
|
29 |
+
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
|
30 |
+
|
31 |
+
# Load the tokenizer and text encoder to tokenize and encode the text.
|
32 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
33 |
+
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
34 |
+
|
35 |
+
# The UNet model for generating the latents.
|
36 |
+
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
|
37 |
+
|
38 |
+
# The noise scheduler
|
39 |
+
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
40 |
+
|
41 |
+
# To the GPU we go!
|
42 |
+
vae = vae.to(torch_device)
|
43 |
+
text_encoder = text_encoder.to(torch_device)
|
44 |
+
unet = unet.to(torch_device)
|
45 |
+
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
|
46 |
+
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
|
47 |
+
|
48 |
+
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
|
49 |
+
position_embeddings = pos_emb_layer(position_ids)
|
50 |
+
|
51 |
+
|
52 |
+
def get_output_embeds(input_embeddings):
|
53 |
+
# CLIP's text model uses causal mask, so we prepare it here:
|
54 |
+
bsz, seq_len = input_embeddings.shape[:2]
|
55 |
+
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
|
56 |
+
|
57 |
+
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
|
58 |
+
# so that it doesn't just return the pooled final predictions:
|
59 |
+
encoder_outputs = text_encoder.text_model.encoder(
|
60 |
+
inputs_embeds=input_embeddings,
|
61 |
+
attention_mask=None, # We aren't using an attention mask so that can be None
|
62 |
+
causal_attention_mask=causal_attention_mask.to(torch_device),
|
63 |
+
output_attentions=None,
|
64 |
+
output_hidden_states=True, # We want the output embs not the final output
|
65 |
+
return_dict=None,
|
66 |
+
)
|
67 |
+
|
68 |
+
# We're interested in the output hidden state only
|
69 |
+
output = encoder_outputs[0]
|
70 |
+
|
71 |
+
# There is a final layer norm we need to pass these through
|
72 |
+
output = text_encoder.text_model.final_layer_norm(output)
|
73 |
+
|
74 |
+
# And now they're ready!
|
75 |
+
return output
|
76 |
+
|
77 |
+
|
78 |
+
def set_timesteps(scheduler, num_inference_steps):
|
79 |
+
scheduler.set_timesteps(num_inference_steps)
|
80 |
+
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
|
81 |
+
|
82 |
+
def pil_to_latent(input_im):
|
83 |
+
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
|
84 |
+
with torch.no_grad():
|
85 |
+
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
|
86 |
+
return 0.18215 * latent.latent_dist.sample()
|
87 |
+
|
88 |
+
def latents_to_pil(latents):
|
89 |
+
# bath of latents -> list of images
|
90 |
+
latents = (1 / 0.18215) * latents
|
91 |
+
with torch.no_grad():
|
92 |
+
image = vae.decode(latents).sample
|
93 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
94 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
95 |
+
images = (image * 255).round().astype("uint8")
|
96 |
+
pil_images = [Image.fromarray(image) for image in images]
|
97 |
+
return pil_images
|
98 |
+
|
99 |
+
|
100 |
+
def generate_with_embs(text_embeddings, text_input, seed):
|
101 |
+
|
102 |
+
height = 512 # default height of Stable Diffusion
|
103 |
+
width = 512 # default width of Stable Diffusion
|
104 |
+
num_inference_steps = 10 # Number of denoising steps
|
105 |
+
guidance_scale = 7.5 # Scale for classifier-free guidance
|
106 |
+
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
|
107 |
+
batch_size = 1
|
108 |
+
|
109 |
+
max_length = text_input.input_ids.shape[-1]
|
110 |
+
uncond_input = tokenizer(
|
111 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
112 |
+
)
|
113 |
+
with torch.no_grad():
|
114 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
115 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
116 |
+
|
117 |
+
# Prep Scheduler
|
118 |
+
set_timesteps(scheduler, num_inference_steps)
|
119 |
+
|
120 |
+
# Prep latents
|
121 |
+
latents = torch.randn(
|
122 |
+
(batch_size, unet.in_channels, height // 8, width // 8),
|
123 |
+
generator=generator,
|
124 |
+
)
|
125 |
+
latents = latents.to(torch_device)
|
126 |
+
latents = latents * scheduler.init_noise_sigma
|
127 |
+
|
128 |
+
# Loop
|
129 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
130 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
131 |
+
latent_model_input = torch.cat([latents] * 2)
|
132 |
+
sigma = scheduler.sigmas[i]
|
133 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
134 |
+
|
135 |
+
# predict the noise residual
|
136 |
+
with torch.no_grad():
|
137 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
138 |
+
|
139 |
+
# perform guidance
|
140 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
141 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
142 |
+
|
143 |
+
# compute the previous noisy sample x_t -> x_t-1
|
144 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
145 |
+
|
146 |
+
return latents_to_pil(latents)[0]
|
147 |
+
|
148 |
+
|
149 |
+
def generate_with_prompt_style(prompt, style, seed = 42):
|
150 |
+
|
151 |
+
prompt = prompt + ' in style of s'
|
152 |
+
embed = torch.load(style)
|
153 |
+
|
154 |
+
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
155 |
+
# for t in text_input['input_ids'][0][:20]: # We'll just look at the first 7 to save you from a wall of '<|endoftext|>'
|
156 |
+
# print(t, tokenizer.decoder.get(int(t)))
|
157 |
+
input_ids = text_input.input_ids.to(torch_device)
|
158 |
+
|
159 |
+
token_embeddings = token_emb_layer(input_ids)
|
160 |
+
# The new embedding - our special birb word
|
161 |
+
replacement_token_embedding = embed[list(embed.keys())[0]].to(torch_device)
|
162 |
+
|
163 |
+
# Insert this into the token embeddings
|
164 |
+
token_embeddings[0, torch.where(input_ids[0]==338)] = replacement_token_embedding.to(torch_device)
|
165 |
+
|
166 |
+
# Combine with pos embs
|
167 |
+
input_embeddings = token_embeddings + position_embeddings
|
168 |
+
|
169 |
+
# Feed through to get final output embs
|
170 |
+
modified_output_embeddings = get_output_embeds(input_embeddings)
|
171 |
+
|
172 |
+
# And generate an image with this:
|
173 |
+
return generate_with_embs(modified_output_embeddings, text_input, seed)
|
174 |
+
|
175 |
+
|
176 |
+
import torch
|
177 |
+
|
178 |
+
def contrast_loss(images):
|
179 |
+
variance = torch.var(images)
|
180 |
+
return -variance
|
181 |
+
|
182 |
+
def generate_with_prompt_style_guidance(prompt, style, seed=42):
|
183 |
+
|
184 |
+
prompt = prompt + ' in style of s'
|
185 |
+
|
186 |
+
embed = torch.load(style)
|
187 |
+
|
188 |
+
height = 512 # default height of Stable Diffusion
|
189 |
+
width = 512 # default width of Stable Diffusion
|
190 |
+
num_inference_steps = 10 # # Number of denoising steps
|
191 |
+
guidance_scale = 8 # # Scale for classifier-free guidance
|
192 |
+
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
|
193 |
+
batch_size = 1
|
194 |
+
contrast_loss_scale = 200 #
|
195 |
+
|
196 |
+
# Prep text
|
197 |
+
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
198 |
+
with torch.no_grad():
|
199 |
+
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
|
200 |
+
|
201 |
+
input_ids = text_input.input_ids.to(torch_device)
|
202 |
+
|
203 |
+
# Get token embeddings
|
204 |
+
token_embeddings = token_emb_layer(input_ids)
|
205 |
+
|
206 |
+
# The new embedding - our special birb word
|
207 |
+
replacement_token_embedding = embed[list(embed.keys())[0]].to(torch_device)
|
208 |
+
|
209 |
+
# Insert this into the token embeddings
|
210 |
+
token_embeddings[0, torch.where(input_ids[0]==338)] = replacement_token_embedding.to(torch_device)
|
211 |
+
|
212 |
+
# Combine with pos embs
|
213 |
+
input_embeddings = token_embeddings + position_embeddings
|
214 |
+
|
215 |
+
# Feed through to get final output embs
|
216 |
+
modified_output_embeddings = get_output_embeds(input_embeddings)
|
217 |
+
|
218 |
+
# And the uncond. input as before:
|
219 |
+
max_length = text_input.input_ids.shape[-1]
|
220 |
+
uncond_input = tokenizer(
|
221 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
222 |
+
)
|
223 |
+
with torch.no_grad():
|
224 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
225 |
+
|
226 |
+
text_embeddings = torch.cat([uncond_embeddings, modified_output_embeddings])
|
227 |
+
|
228 |
+
# Prep Scheduler
|
229 |
+
scheduler.set_timesteps(num_inference_steps)
|
230 |
+
|
231 |
+
# Prep latents
|
232 |
+
latents = torch.randn(
|
233 |
+
(batch_size, unet.config.in_channels, height // 8, width // 8),
|
234 |
+
generator=generator,
|
235 |
+
)
|
236 |
+
latents = latents.to(torch_device)
|
237 |
+
latents = latents * scheduler.init_noise_sigma
|
238 |
+
|
239 |
+
# Loop
|
240 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
241 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
242 |
+
latent_model_input = torch.cat([latents] * 2)
|
243 |
+
sigma = scheduler.sigmas[i]
|
244 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
245 |
+
|
246 |
+
# predict the noise residual
|
247 |
+
with torch.no_grad():
|
248 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
249 |
+
|
250 |
+
# perform CFG
|
251 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
252 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
253 |
+
|
254 |
+
#### ADDITIONAL GUIDANCE ###
|
255 |
+
if i%5 == 0:
|
256 |
+
# Requires grad on the latents
|
257 |
+
latents = latents.detach().requires_grad_()
|
258 |
+
|
259 |
+
# Get the predicted x0:
|
260 |
+
latents_x0 = latents - sigma * noise_pred
|
261 |
+
# latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
|
262 |
+
|
263 |
+
# Decode to image space
|
264 |
+
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
265 |
+
|
266 |
+
# Calculate loss
|
267 |
+
loss = contrast_loss(denoised_images) * contrast_loss_scale
|
268 |
+
|
269 |
+
# # Occasionally print it out
|
270 |
+
# if i%10==0:
|
271 |
+
# print(i, 'loss:', loss.item())
|
272 |
+
|
273 |
+
# Get gradient
|
274 |
+
cond_grad = torch.autograd.grad(loss, latents)[0]
|
275 |
+
|
276 |
+
# Modify the latents based on this gradient
|
277 |
+
latents = latents.detach() - cond_grad * sigma**2
|
278 |
+
|
279 |
+
# Now step with scheduler
|
280 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
281 |
+
|
282 |
+
|
283 |
+
return latents_to_pil(latents)[0]
|
284 |
+
|
285 |
+
|
286 |
+
import gradio as gr
|
287 |
+
|
288 |
+
dict_styles = {'Arcane':'styles/learned_embeds_arcane.bin',
|
289 |
+
'Button eyes':'styles/learned_embeds_buttoneyes.bin',
|
290 |
+
'Dr Strange': 'styles/learned_embeds_dr_strange.bin',
|
291 |
+
'GTA-5':'styles/learned_embeds_gta5.bin',
|
292 |
+
'Illustration': 'styles/learned_embeds_illustration.bin',
|
293 |
+
'Manga':'styles/learned_embeds_manga.bin',
|
294 |
+
'Matrix':'styles/learned_embeds_matrix.bin',
|
295 |
+
'Oil Painting':'styles/learned_embeds_oil.bin',
|
296 |
+
'Pokemon':'styles/learned_embeds_pokemon.bin',
|
297 |
+
'Stripes': 'styles/learned_embeds_stripe.bin'}
|
298 |
+
# dict_styles.keys()
|
299 |
+
|
300 |
+
def inference(prompt, style):
|
301 |
+
|
302 |
+
if prompt is not None and style is not None:
|
303 |
+
style = dict_styles[style]
|
304 |
+
result = generate_with_prompt_style_guidance(prompt, style)
|
305 |
+
return np.array(result)
|
306 |
+
else:
|
307 |
+
return None
|
308 |
+
|
309 |
+
title = "Stable Diffusion and Textual Inversion"
|
310 |
+
description = "A simple Gradio interface to stylize Stable Diffusion outputs"
|
311 |
+
examples = [['A man sipping wine wearing a spacesuit on the moon', 'Stripes']]
|
312 |
+
|
313 |
+
demo = gr.Interface(inference,
|
314 |
+
inputs = [gr.Textbox(label='Prompt'),
|
315 |
+
gr.Dropdown(['Arcane', 'Button eyes', 'Dr Strange', 'GTA-5', 'Illustration',
|
316 |
+
'Manga', 'Matrix', 'Oil Painting', 'Pokemon', 'Stripes'], label='Style')
|
317 |
+
],
|
318 |
+
outputs = [
|
319 |
+
gr.Image(label="Stable Diffusion Output"),
|
320 |
+
],
|
321 |
+
title = title,
|
322 |
+
description = description,
|
323 |
+
# examples = examples,
|
324 |
+
# cache_examples=True
|
325 |
+
)
|
326 |
+
demo.launch()
|
327 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers==4.25.1
|
3 |
+
diffusers
|
4 |
+
ftfy
|
5 |
+
torchvision
|
6 |
+
tqdm
|
7 |
+
numpy
|
8 |
+
accelerate
|
9 |
+
scipy
|
10 |
+
Pillow
|
styles/learned_embeds_arcane.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61d37c394fbeee79b296cf10101032280b501bdef78d655f76d767c784742880
|
3 |
+
size 3819
|
styles/learned_embeds_buttoneyes.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70431a97baff1d4c591b9a1ba71b09764e19a8388666fabf9c5fcfe961102da8
|
3 |
+
size 3819
|
styles/learned_embeds_dr_strange.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b6b774ecebb94ddd9b04e16eb76db8203708b7ff4f432c0f4f563be1d411e53
|
3 |
+
size 3819
|
styles/learned_embeds_gta5.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e58b1a7e49aaf5122d2959a248c2e73d66da7e858871676a7094bdfb1fb962f
|
3 |
+
size 3819
|
styles/learned_embeds_illustration.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44d65046c071e37f75f31a7a81a34c50a96080e8a3aedc7cda1094dae5d385f0
|
3 |
+
size 3819
|
styles/learned_embeds_manga.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83f11ec9967b9cd81670104504b70db47b2fb77265bb3a4defba98b6cff17edf
|
3 |
+
size 3819
|
styles/learned_embeds_matrix.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b84b50aad5f237f0639cf7d705a66d33b3da5e4e285161fb5084187648f3b0c
|
3 |
+
size 3840
|
styles/learned_embeds_oil.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:754d7d9c1fcdc7e05fd273f21e77b05bc89a4ba25415d24de1286f1fbdf9e0c7
|
3 |
+
size 3840
|
styles/learned_embeds_pokemon.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:802ac8a61383f147dae01390ff23ca040165b59b17ffc9a9bd172541c4c0e1cc
|
3 |
+
size 3819
|
styles/learned_embeds_stripe.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1642fabeef65edb374857553e75dae1f6ec8ab3aeba634d0a026f836e8cc4db
|
3 |
+
size 3840
|