File size: 1,535 Bytes
5e2af49
2e266db
3fe99f4
5e2af49
 
76a7205
 
 
 
 
e54d2b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e2af49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel


# Load model
hub_path = 'guptavishal79/aimlops'
loaded_model = GPT2LMHeadModel.from_pretrained(hub_path)
loaded_tokenizer = GPT2Tokenizer.from_pretrained(hub_path)


def generate_response(model, tokenizer, prompt, max_length=200):
  input_ids = tokenizer.encode(prompt, return_tensors="pt")
  # Create the attention mask and pad token id
  attention_mask = torch.ones_like(input_ids)
  pad_token_id = tokenizer.eos_token_id

  output = model.generate(
      input_ids,
      max_length=max_length,
      num_return_sequences=1,
      attention_mask=attention_mask,
      pad_token_id=pad_token_id
  )

  return tokenizer.decode(output[0], skip_special_tokens=True)

# Function for response generation
def generate_query_response(prompt, max_length=200):

  model = loaded_model
  tokenizer = loaded_tokenizer

  prompt = f"<question>{prompt}<answer>"
  response = generate_response(model, tokenizer, prompt, max_length)

  return response

# Gradio elements

# Input from user
in_prompt = gradio.Textbox(lines=2, placeholder=None, value="", label='Enter Medical Question')
in_max_length = gradio.Number(value=200, label='Answer Length')

# Output response
out_response = gradio.Textbox(type="text", label='Answer')

# Gradio interface to generate UI link
iface = gradio.Interface(fn = generate_query_response,
                         inputs = [in_prompt, in_max_length],
                         outputs = [out_response])

iface.launch(share = True)