import gradio as gr from datetime import datetime, timedelta from gemini_api import model_api, sentiment, category, ord_num, NO_ORDER cust_qry_resp = {"senti":"", "cat":"", "num":""} #********* UI Code ***********# with gr.Blocks(title="Customer Support Assistant", analytics_enabled=False) as app: state_order_num = gr.State(NO_ORDER) gr.Markdown("Customer Support Assistant") # Inputs from user with gr.Row(): cust_qry = gr.Textbox(lines=5, type="text", label="Customer Query") btn_cust_qry = gr.Button("Analyze Query") # Model Output @gr.render(inputs=[cust_qry], triggers=[btn_cust_qry.click]) # Function for prediction def invoke_model(user_input): if len(user_input) == 0: gr.Markdown("## No Customer Query Provided") else: senti = model_api(user_input, sentiment) cat = model_api(user_input, category) num = model_api(user_input, ord_num) # Output response gr.Textbox(lines=1, type="text", label="Customer Sentiment", value=senti) gr.Textbox(lines=1, type="text", label="Order Category", value=cat) gr.Textbox(lines=1, type="text", label="Order Number", value=num) # Decision Rules if num != NO_ORDER: btn_ord_det = gr.Button("Fetch Order Details") btn_ord_det.click(lambda x: num, state_order_num, state_order_num) # Order Details if senti == "NEGATIVE" and num == NO_ORDER: with gr.Row(): gr.Textbox(lines=1, type="text", label="Next Step", value="Ask Order Number") @gr.render(inputs=state_order_num) def fetch_order_det(ord_num): print("Get order Details") if ord_num != NO_ORDER: pur_dt = datetime.now() + timedelta(days=-2) ord_det = f"Order Number: {ord_num}\nPurchase Date: {pur_dt}" gr.Textbox(lines=1, type="text", label="Order Details", value=ord_det) if __name__ == "__main__": app.launch(server_name="0.0.0.0")