Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import torch
|
5 |
+
|
6 |
+
model_name = "AntiSpamInstitute/bert-MoE-Phishing-detection-v2.4"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
|
10 |
+
@spaces.GPU
|
11 |
+
def predict_phishing(text):
|
12 |
+
model.to('cuda')
|
13 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512, padding=True)
|
14 |
+
inputs = {k: v.to('cuda') for k, v in inputs.items()}
|
15 |
+
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = model(**inputs)
|
18 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
19 |
+
prediction = torch.argmax(probabilities, dim=-1)
|
20 |
+
confidence = probabilities[0][prediction].item()
|
21 |
+
|
22 |
+
result = "🚨 Phishing" if prediction.item() == 1 else "✅ Legitimate"
|
23 |
+
confidence_pct = f"{confidence * 100:.2f}%"
|
24 |
+
|
25 |
+
return {
|
26 |
+
"Prediction": result,
|
27 |
+
"Confidence": confidence_pct,
|
28 |
+
"Probability Breakdown": {
|
29 |
+
"Legitimate": f"{probabilities[0][0].item():.4f}",
|
30 |
+
"Phishing": f"{probabilities[0][1].item():.4f}"
|
31 |
+
}
|
32 |
+
}
|
33 |
+
|
34 |
+
EXAMPLES = [
|
35 |
+
["Dear Customer, We've detected unusual activity on your account. Click here to verify: http://amaz0n-security.net/verify"],
|
36 |
+
["Hi John, Please review the Q4 sales report I've attached. Let me know if you need any clarification. Best regards, Sarah"],
|
37 |
+
["URGENT: Your PayPal account has been limited. Login here to restore access: http://paypa1-secure.com/restore"],
|
38 |
+
["Meeting reminder: Team sync at 2 PM today in Conference Room A. Agenda attached."],
|
39 |
+
["Congratulations! You've won a $1000 Amazon gift card. Claim now: http://free-prizes.net/claim"],
|
40 |
+
["Dear team, The deadline for submitting Q1 expense reports is next Friday. Please use the standard template."]
|
41 |
+
]
|
42 |
+
|
43 |
+
demo = gr.Interface(
|
44 |
+
fn=predict_phishing,
|
45 |
+
inputs=gr.Textbox(
|
46 |
+
lines=8,
|
47 |
+
placeholder="Enter email text here...",
|
48 |
+
label="Email Content",
|
49 |
+
elem_id="email_input"
|
50 |
+
),
|
51 |
+
outputs=gr.JSON(label="Analysis Results"),
|
52 |
+
title="📧 Phishing Email Detector",
|
53 |
+
description="""
|
54 |
+
### Analyze emails for potential phishing attempts
|
55 |
+
This tool uses a BERT-based model to detect phishing emails. Enter the content of an email to analyze it.
|
56 |
+
The model will classify the email and provide confidence scores.
|
57 |
+
""",
|
58 |
+
examples=EXAMPLES,
|
59 |
+
theme=gr.themes.Base().set(
|
60 |
+
body_background_fill="*neutral_50",
|
61 |
+
block_background_fill="*neutral_100",
|
62 |
+
block_label_background_fill="*neutral_100",
|
63 |
+
input_background_fill="*neutral_0"
|
64 |
+
),
|
65 |
+
css="""
|
66 |
+
#email_input { font-family: monospace; }
|
67 |
+
.gradio-container { max-width: 800px; margin: auto; }
|
68 |
+
"""
|
69 |
+
)
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
demo.queue().launch(
|
73 |
+
share=False,
|
74 |
+
debug=False,
|
75 |
+
show_api=False,
|
76 |
+
server_name="0.0.0.0"
|
77 |
+
)
|