File size: 14,992 Bytes
fda1312
 
 
 
 
 
 
 
 
 
 
 
 
4fcd593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fda1312
 
4fcd593
fda1312
4fcd593
 
fda1312
 
 
 
 
 
 
 
 
 
 
 
 
4fcd593
fda1312
 
 
 
 
 
 
4fcd593
 
 
 
 
 
 
 
 
 
fda1312
4fcd593
 
fda1312
4fcd593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fda1312
4fcd593
 
 
 
 
 
 
 
fda1312
 
4fcd593
 
 
 
 
 
 
 
 
 
 
 
 
 
fda1312
4fcd593
 
 
 
 
 
 
fda1312
 
 
4fcd593
fda1312
 
 
 
 
 
 
 
 
 
 
4fcd593
 
fda1312
 
 
 
 
 
 
 
4fcd593
 
fda1312
4fcd593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This is an implementation of the `CodeEval` metric that uses `RestrictedPython`
to exectue the untrusted code returned by the model.
Lightly adapted and mostly copied verbatim from the implementation in `evaluate`. 
"""

import contextlib
import faulthandler
import itertools
import io
import multiprocessing
import os
import platform
import signal
import tempfile

from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed

import evaluate
# from evaluate.metrics import code_eval
import datasets
import numpy as np
from RestrictedPython import compile_restricted, safe_builtins, limited_builtins, utility_builtins


# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This module tries to extend the built in `code_eval` module to use restricted python.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of candidates to evaluate. Each candidates should be a list
        of strings with several code candidates to solve the problem.
    references: a list with a test for each prediction. Each test should evaluate the
        correctness of a code candidate.
    k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])
    num_workers: number of workers used to evaluate the canidate programs (Default: 4).
    timeout:
    use_safe_builtins: a bool indicating whether to use the `RestrictedPython.safe_builtins`
    use_limited_builtins: a bool indicating whether to use the `RestrictedPython.limited_builtins`
    use_utility_builtins: a bool indicating whether to use the `RestrictedPython.utility_builtins`
Returns:
    pass_at_k: dict with pass rates for each k
    results: dict with granular results of each unittest
Examples:
    >>> code_eval = evaluate.load("code_eval")
    >>> test_cases = ["assert add(2,3)==5"]
    >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]
    >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])
    >>> print(pass_at_k)
    {'pass@1': 0.5, 'pass@2': 1.0}
"""

_WARNING = """
################################################################################
                                  !!!WARNING!!!
################################################################################
The "code_eval" metric executes untrusted model-generated code in Python.
Although it is highly unlikely that model-generated code will do something
overtly malicious in response to this test suite, model-generated code may act
destructively due to a lack of model capability or alignment.
Users are strongly encouraged to sandbox this evaluation suite so that it
does not perform destructive actions on their host or network. For more
information on how OpenAI sandboxes its code, see the paper "Evaluating Large
Language Models Trained on Code" (https://arxiv.org/abs/2107.03374).

Once you have read this disclaimer and taken appropriate precautions,
set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this
with:

>>> import os
>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"

################################################################################\
"""

# TODO: who has the copyright?
_LICENSE = """The MIT License

Copyright (c) OpenAI (https://openai.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE."""

@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class RestrictedPythonCodeEval(evaluate.Metric):
    """Exactly the same as the built in `code_eval` module, but using restricted python"""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.Sequence(datasets.Value("string")),
                'references': datasets.Value('string'),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _compute(self, predictions, references, k=[1, 10, 100], num_workers=4, timeout=3.0,
                 use_safe_builtins: bool = True, use_limited_builtins: bool = True, use_utility_builtins: bool = True):
        """Returns the scores"""

        if os.getenv("HF_ALLOW_CODE_EVAL", 0) != "1":
            raise ValueError(_WARNING)

        if os.name == "nt":
            raise NotImplementedError("This metric is currently not supported on Windows.")

        with ThreadPoolExecutor(max_workers=num_workers) as executor:
            futures = []
            completion_id = Counter()
            n_samples = 0
            results = defaultdict(list)

            for task_id, (candidates, test_case) in enumerate(zip(predictions, references)):
                for candidate in candidates:
                    test_program = candidate + "\n" + test_case
                    args = (test_program, timeout, task_id, completion_id[task_id], use_safe_builtins, use_limited_builtins, use_utility_builtins)
                    future = executor.submit(_check_correctness, *args)
                    futures.append(future)
                    completion_id[task_id] += 1
                    n_samples += 1

            for future in as_completed(futures):
                result = future.result()
                results[result["task_id"]].append((result["completion_id"], result))

        total, correct = [], []
        for result in results.values():
            result.sort()
            passed = [r[1]["passed"] for r in result]
            total.append(len(passed))
            correct.append(sum(passed))
        total = np.array(total)
        correct = np.array(correct)

        ks = k
        pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean() for k in ks if (total >= k).all()}

        return pass_at_k, results
            

def estimate_pass_at_k(num_samples, num_correct, k):
    """Estimates pass@k of each problem and returns them in an array."""

    def estimator(n: int, c: int, k: int) -> float:
        """Calculates 1 - comb(n - c, k) / comb(n, k)."""
        if n - c < k:
            return 1.0
        return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))  # type: ignore

    if isinstance(num_samples, int):
        num_samples_it = itertools.repeat(num_samples, len(num_correct))
    else:
        assert len(num_samples) == len(num_correct)
        num_samples_it = iter(num_samples)

    return np.array([estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)])



def _check_correctness(check_program, timeout, task_id, completion_id,
                       use_safe_builtins: bool = True, use_limited_builtins: bool = True, use_utility_builtins: bool = True):
    """
    Evaluates the functional correctness of a completion by running the test
    suite provided in the problem.

    :param completion_id: an optional completion ID so we can match
        the results later even if execution finishes asynchronously.
    """
    manager = multiprocessing.Manager()
    result = manager.list()

    p = multiprocessing.Process(target=_unsafe_execute, args=(check_program, result, timeout, use_safe_builtins, use_limited_builtins, use_utility_builtins))
    p.start()
    p.join(timeout=timeout + 1)
    if p.is_alive():
        p.kill()

    if not result:
        result.append("timed out")

    return dict(
        task_id=task_id,
        passed=result[0] == "passed",
        result=result[0],
        completion_id=completion_id,
    )

def _unsafe_execute(check_program, result, timeout, 
                    use_safe_builtins: bool = True, use_limited_builtins: bool = True, use_utility_builtins: bool = True):

    with create_tempdir():

        # These system calls are needed when cleaning up tempdir.
        import os
        import shutil

        rmtree = shutil.rmtree
        rmdir = os.rmdir
        chdir = os.chdir

        # Disable functionalities that can make destructive changes to the test.
        reliability_guard()

        # Run program.
        try:
            builtins = {}
            if use_safe_builtins:
                builtins.update(safe_builtins)
            if use_limited_builtins:
                builtins.update(limited_builtins)
            if use_utility_builtins:
                builtins.update(utility_builtins)

            exec_globals = {'__builtins__': builtins}
            with swallow_io():
                with time_limit(timeout):
                    byte_code = compile_restricted(check_program, filename="<model output>", mode="exec")
                    exec(byte_code, exec_globals, None)
            result.append("passed")
        except TimeoutException:
            result.append("timed out")
        except BaseException as e:
            result.append(f"failed: {e}")

        # Needed for cleaning up.
        shutil.rmtree = rmtree
        os.rmdir = rmdir
        os.chdir = chdir


@contextlib.contextmanager
def time_limit(seconds):
    def signal_handler(signum, frame):
        raise TimeoutException("Timed out!")

    signal.setitimer(signal.ITIMER_REAL, seconds)
    signal.signal(signal.SIGALRM, signal_handler)
    try:
        yield
    finally:
        signal.setitimer(signal.ITIMER_REAL, 0)


@contextlib.contextmanager
def swallow_io():
    stream = WriteOnlyStringIO()
    with contextlib.redirect_stdout(stream):
        with contextlib.redirect_stderr(stream):
            with redirect_stdin(stream):
                yield


@contextlib.contextmanager
def create_tempdir():
    with tempfile.TemporaryDirectory() as dirname:
        with chdir(dirname):
            yield dirname


class TimeoutException(Exception):
    pass


class WriteOnlyStringIO(io.StringIO):
    """StringIO that throws an exception when it's read from"""

    def read(self, *args, **kwargs):
        raise OSError

    def readline(self, *args, **kwargs):
        raise OSError

    def readlines(self, *args, **kwargs):
        raise OSError

    def readable(self, *args, **kwargs):
        """Returns True if the IO object can be read."""
        return False


class redirect_stdin(contextlib._RedirectStream):  # type: ignore
    _stream = "stdin"


@contextlib.contextmanager
def chdir(root):
    if root == ".":
        yield
        return
    cwd = os.getcwd()
    os.chdir(root)
    try:
        yield
    except BaseException as exc:
        raise exc
    finally:
        os.chdir(cwd)


def reliability_guard(maximum_memory_bytes=None):
    """
    This disables various destructive functions and prevents the generated code
    from interfering with the test (e.g. fork bomb, killing other processes,
    removing filesystem files, etc.)

    WARNING
    This function is NOT a security sandbox. Untrusted code, including, model-
    generated code, should not be blindly executed outside of one. See the
    Codex paper for more information about OpenAI's code sandbox, and proceed
    with caution.
    """

    if maximum_memory_bytes is not None:
        import resource

        resource.setrlimit(resource.RLIMIT_AS, (maximum_memory_bytes, maximum_memory_bytes))
        resource.setrlimit(resource.RLIMIT_DATA, (maximum_memory_bytes, maximum_memory_bytes))
        if not platform.uname().system == "Darwin":
            resource.setrlimit(resource.RLIMIT_STACK, (maximum_memory_bytes, maximum_memory_bytes))

    faulthandler.disable()

    import builtins

    builtins.exit = None
    builtins.quit = None

    import os

    os.environ["OMP_NUM_THREADS"] = "1"

    os.kill = None
    os.system = None
    os.putenv = None
    os.remove = None
    os.removedirs = None
    os.rmdir = None
    os.fchdir = None
    os.setuid = None
    os.fork = None
    os.forkpty = None
    os.killpg = None
    os.rename = None
    os.renames = None
    os.truncate = None
    os.replace = None
    os.unlink = None
    os.fchmod = None
    os.fchown = None
    os.chmod = None
    os.chown = None
    os.chroot = None
    os.fchdir = None
    os.lchflags = None
    os.lchmod = None
    os.lchown = None
    os.getcwd = None
    os.chdir = None

    import shutil

    shutil.rmtree = None
    shutil.move = None
    shutil.chown = None

    import subprocess

    subprocess.Popen = None  # type: ignore

    __builtins__["help"] = None

    import sys

    sys.modules["ipdb"] = None  # type: ignore
    sys.modules["joblib"] = None  # type: ignore
    sys.modules["resource"] = None  # type: ignore
    sys.modules["psutil"] = None  # type: ignore
    sys.modules["tkinter"] = None  # type: ignore