File size: 4,019 Bytes
f12ab4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import os
import torch
import json
import argparse

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--in_root', type=str, default="", help='process folder')
    parser.add_argument('--out_root', type=str, default="output", help='output folder')
    args = parser.parse_args()
    in_root = args.in_root

    def compute_rotation(angles):
        """
        Return:
            rot              -- torch.tensor, size (B, 3, 3) pts @ trans_mat

        Parameters:
            angles           -- torch.tensor, size (B, 3), radian
        """

        batch_size = angles.shape[0]
        ones = torch.ones([batch_size, 1])
        zeros = torch.zeros([batch_size, 1])
        x, y, z = angles[:, :1], angles[:, 1:2], angles[:, 2:],
        
        rot_x = torch.cat([
            ones, zeros, zeros,
            zeros, torch.cos(x), -torch.sin(x), 
            zeros, torch.sin(x), torch.cos(x)
        ], dim=1).reshape([batch_size, 3, 3])
        
        rot_y = torch.cat([
            torch.cos(y), zeros, torch.sin(y),
            zeros, ones, zeros,
            -torch.sin(y), zeros, torch.cos(y)
        ], dim=1).reshape([batch_size, 3, 3])

        rot_z = torch.cat([
            torch.cos(z), -torch.sin(z), zeros,
            torch.sin(z), torch.cos(z), zeros,
            zeros, zeros, ones
        ], dim=1).reshape([batch_size, 3, 3])

        rot = rot_z @ rot_y @ rot_x
        return rot.permute(0, 2, 1)[0]

    npys = sorted([x for x in os.listdir(in_root) if x.endswith(".npy")])

    mode = 1 #1 = IDR, 2 = LSX
    outAll={}

    for src_filename in npys:
        src = os.path.join(in_root, src_filename)
        
        print(src)
        dict_load=np.load(src, allow_pickle=True)

        angle = dict_load.item()['angle']
        trans = dict_load.item()['trans'][0]
        R = compute_rotation(torch.from_numpy(angle)).numpy()
    
        trans[2] += -10
        c = -np.dot(R, trans)
        pose = np.eye(4)
        pose[:3, :3] = R

        c *= 0.27 # factor to match tripleganger
        c[1] += 0.006 # offset to align to tripleganger
        c[2] += 0.161 # offset to align to tripleganger
        c = c/np.linalg.norm(c)*2.7  ##yiqian教我放到半球上去
        pose[0,3] = c[0]
        pose[1,3] = c[1]
        pose[2,3] = c[2] 

        focal = 2985.29 # = 1015*1024/224*(300/466.285)#
        pp = 512#112
        w = 1024#224
        h = 1024#224

        if mode==1:
            count = 0
            K = np.eye(3)
            K[0][0] = focal
            K[1][1] = focal
            K[0][2] = w/2.0
            K[1][2] = h/2.0
            K = K.tolist()

            Rot = np.eye(3)
            Rot[0, 0] = 1
            Rot[1, 1] = -1
            Rot[2, 2] = -1        
            pose[:3, :3] = np.dot(pose[:3, :3], Rot)

            pose = pose.tolist()
            out = {}
            out["intrinsics"] = K
            out["pose"] = pose
            out["angle"] = (angle * [1, -1, 1]).flatten().tolist()
            outAll[src_filename.replace(".npy", ".png")] = out

        elif mode==2:

            dst = os.path.join(in_root, src_filename.replace(".npy", "_lscam.txt"))
            outCam = open(dst, "w")
            outCam.write("#focal length\n")
            outCam.write(str(focal) + " " + str(focal) + "\n")

            outCam.write("#principal point\n")
            outCam.write(str(pp) + " " + str(pp) + "\n")

            outCam.write("#resolution\n")
            outCam.write(str(w) + " " + str(h) + "\n")

            outCam.write("#distortion coeffs\n")
            outCam.write("0 0 0 0\n")


            outCam.write("MATRIX :\n")
            for r in range(4):
                outCam.write(str(pose[r, 0]) + " " + str(pose[r, 1]) + " " + str(pose[r, 2]) + " " + str(pose[r, 3]) + "\n")

            outCam.close()

    if mode == 1:
        dst = os.path.join(args.out_root, "cameras.json")
        with open(dst, "w") as outfile:
            json.dump(outAll, outfile, indent=4)