File size: 8,305 Bytes
f12ab4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import numpy as np
import os
import sys
import pathlib

import util
import tensorflow as tf

sys.path.insert(0, os.path.join(sys.path[0], '../..')) # for nvdiffrast
import nvdiffrast.tensorflow as dr

#----------------------------------------------------------------------------
# Cube shape fitter.
#----------------------------------------------------------------------------

def fit_cube(max_iter          = 5000,
             resolution        = 4, 
             discontinuous     = False,
             repeats           = 1,
             log_interval      = 10, 
             display_interval  = None,
             display_res       = 512,
             out_dir           = '.',
             log_fn            = None,
             imgsave_interval  = None,
             imgsave_fn        = None):

    if out_dir:
        os.makedirs(out_dir, exist_ok=True)
    
    datadir = f'{pathlib.Path(__file__).absolute().parents[1]}/data'
    fn = 'cube_%s.npz' % ('d' if discontinuous else 'c')
    with np.load(f'{datadir}/{fn}') as f:
        pos_idx, vtxp, col_idx, vtxc = f.values()
    print("Mesh has %d triangles and %d vertices." % (pos_idx.shape[0], vtxp.shape[0]))
        
    # Transformation matrix input to TF graph.
    mtx_in = tf.placeholder(tf.float32, [4, 4])

    # Setup TF graph for reference.
    vtxw = np.concatenate([vtxp, np.ones([vtxp.shape[0], 1])], axis=1).astype(np.float32)
    pos_clip = tf.matmul(vtxw, mtx_in, transpose_b=True)[tf.newaxis, ...]
    rast_out, _ = dr.rasterize(pos_clip, pos_idx, resolution=[resolution, resolution], output_db=False)
    color, _ = dr.interpolate(vtxc[tf.newaxis, ...], rast_out, col_idx)
    color = dr.antialias(color, rast_out, pos_clip, pos_idx)

    # Optimized variables.
    vtxc_opt = tf.get_variable('vtxc', initializer=tf.zeros_initializer(), shape=vtxc.shape)
    vtxp_opt = tf.get_variable('vtxp', initializer=tf.zeros_initializer(), shape=vtxp.shape)

    # Optimization variable setters for initialization.
    vtxc_opt_in = tf.placeholder(tf.float32, vtxc.shape)
    vtxp_opt_in = tf.placeholder(tf.float32, vtxp.shape)
    opt_set = tf.group(tf.assign(vtxc_opt, vtxc_opt_in), tf.assign(vtxp_opt, vtxp_opt_in))

    # Setup TF graph for what we optimize result.
    vtxw_opt = tf.concat([vtxp_opt, tf.ones([vtxp.shape[0], 1], tf.float32)], axis=1)
    pos_clip_opt = tf.matmul(vtxw_opt, mtx_in, transpose_b=True)[tf.newaxis, ...]
    rast_out_opt, _ = dr.rasterize(pos_clip_opt, pos_idx, resolution=[resolution, resolution], output_db=False)
    color_opt, _ = dr.interpolate(vtxc_opt[tf.newaxis, ...], rast_out_opt, col_idx)
    color_opt = dr.antialias(color_opt, rast_out_opt, pos_clip_opt, pos_idx)

    # Image-space loss and optimizer.
    loss = tf.reduce_mean((color_opt - color)**2)
    lr_in = tf.placeholder(tf.float32, [])
    train_op = tf.train.AdamOptimizer(lr_in, 0.9, 0.999).minimize(loss, var_list=[vtxp_opt, vtxc_opt])

    # Setup TF graph for display.
    rast_out_disp, _ = dr.rasterize(pos_clip_opt, pos_idx, resolution=[display_res, display_res], output_db=False)
    color_disp, _ = dr.interpolate(vtxc_opt[tf.newaxis, ...], rast_out_disp, col_idx)
    color_disp = dr.antialias(color_disp, rast_out_disp, pos_clip_opt, pos_idx)
    rast_out_disp_ref, _ = dr.rasterize(pos_clip, pos_idx, resolution=[display_res, display_res], output_db=False)
    color_disp_ref, _ = dr.interpolate(vtxc[tf.newaxis, ...], rast_out_disp_ref, col_idx)
    color_disp_ref = dr.antialias(color_disp_ref, rast_out_disp_ref, pos_clip, pos_idx)

    # Geometric error calculation
    geom_loss = tf.reduce_mean(tf.reduce_sum((tf.abs(vtxp_opt) - .5)**2, axis=1)**0.5)

    # Open log file.
    log_file = open(out_dir + '/' + log_fn, 'wt') if log_fn else None

    # Repeats.
    for rep in range(repeats):

        # Optimize.
        ang = 0.0
        gl_avg = []
        util.init_uninitialized_vars()
        for it in range(max_iter + 1):
            # Initialize optimization.
            if it == 0:
                vtxp_init = np.random.uniform(-0.5, 0.5, size=vtxp.shape) + vtxp
                vtxc_init = np.random.uniform(0.0, 1.0, size=vtxc.shape)
                util.run(opt_set, {vtxc_opt_in: vtxc_init.astype(np.float32), vtxp_opt_in: vtxp_init.astype(np.float32)})

            # Learning rate ramp.
            lr = 1e-2
            lr = lr * max(0.01, 10**(-it*0.0005))

            # Random rotation/translation matrix for optimization.
            r_rot = util.random_rotation_translation(0.25)

            # Smooth rotation for display.
            a_rot = np.matmul(util.rotate_x(-0.4), util.rotate_y(ang))

            # Modelview and modelview + projection matrices.
            proj  = util.projection(x=0.4)
            r_mv  = np.matmul(util.translate(0, 0, -3.5), r_rot)
            r_mvp = np.matmul(proj, r_mv).astype(np.float32)
            a_mv  = np.matmul(util.translate(0, 0, -3.5), a_rot)
            a_mvp = np.matmul(proj, a_mv).astype(np.float32)
        
            # Run training and measure geometric error.
            gl_val, _ = util.run([geom_loss, train_op], {mtx_in: r_mvp, lr_in: lr})
            gl_avg.append(gl_val)

            # Print/save log.
            if log_interval and (it % log_interval == 0):
                gl_val, gl_avg = np.mean(np.asarray(gl_avg)), []
                s = ("rep=%d," % rep) if repeats > 1 else ""
                s += "iter=%d,err=%f" % (it, gl_val)
                print(s)
                if log_file:
                    log_file.write(s + "\n")

            # Show/save image.
            display_image = display_interval and (it % display_interval == 0)
            save_image = imgsave_interval and (it % imgsave_interval == 0)

            if display_image or save_image:
                ang = ang + 0.1
                img_o = util.run(color_opt, {mtx_in: r_mvp})[0]
                img_b = util.run(color, {mtx_in: r_mvp})[0]
                img_d = util.run(color_disp, {mtx_in: a_mvp})[0]
                img_r = util.run(color_disp_ref, {mtx_in: a_mvp})[0]

                scl = display_res // img_o.shape[0]
                img_b = np.repeat(np.repeat(img_b, scl, axis=0), scl, axis=1)
                img_o = np.repeat(np.repeat(img_o, scl, axis=0), scl, axis=1)
                result_image = np.concatenate([img_o, img_b, img_d, img_r], axis=1)

            if display_image:
                util.display_image(result_image, size=display_res, title='%d / %d' % (it, max_iter))
            if save_image:
                util.save_image(out_dir + '/' + (imgsave_fn % it), result_image)

    # All repeats done.
    if log_file:
        log_file.close()

#----------------------------------------------------------------------------
# Main function.
#----------------------------------------------------------------------------

def main():
    display_interval = 0
    discontinuous = False
    resolution = 0

    def usage():
        print("Usage: python cube.py [-v] [-discontinuous] resolution")
        exit()

    for a in sys.argv[1:]:
        if a == '-v':
            display_interval = 100
        elif a == '-discontinuous':
            discontinuous = True
        elif a.isdecimal():
            resolution = int(a)
        else:
            usage()

    if resolution <= 0:
        usage()

    # Initialize TensorFlow.
    util.init_tf()

    # Run.
    out_dir = 'out/cube_%s_%d' % (('d' if discontinuous else 'c'), resolution)
    fit_cube(max_iter=5000, resolution=resolution, discontinuous=discontinuous, log_interval=10, display_interval=display_interval, out_dir=out_dir, log_fn='log.txt', imgsave_interval=1000, imgsave_fn='img_%06d.png')

    # Done.
    print("Done.")

#----------------------------------------------------------------------------

if __name__ == "__main__":
    main()

#----------------------------------------------------------------------------