File size: 16,538 Bytes
f12ab4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import argparse
import gradio as gr
import os
import shutil
from glob import glob
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from torchvision.utils import make_grid, save_image
from torchvision.io import read_image
import torchvision.transforms.functional as F
from functools import partial
from datetime import datetime
plt.rcParams["savefig.bbox"] = 'tight'
def show(imgs):
if not isinstance(imgs, list):
imgs = [imgs]
fig, axs = plt.subplots(ncols=len(imgs), squeeze=False)
for i, img in enumerate(imgs):
img = F.to_pil_image(img.detach())
axs[0, i].imshow(np.asarray(img))
axs[0, i].set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])
class Intermediate:
def __init__(self):
self.input_img = None
self.input_img_time = 0
model_ckpts = {"elf": "ffhq-elf.pkl",
"greek_statue": "ffhq-greek_statue.pkl",
"hobbit": "ffhq-hobbit.pkl",
"lego": "ffhq-lego.pkl",
"masquerade": "ffhq-masquerade.pkl",
"neanderthal": "ffhq-neanderthal.pkl",
"orc": "ffhq-orc.pkl",
"pixar": "ffhq-pixar.pkl",
"skeleton": "ffhq-skeleton.pkl",
"stone_golem": "ffhq-stone_golem.pkl",
"super_mario": "ffhq-super_mario.pkl",
"tekken": "ffhq-tekken.pkl",
"yoda": "ffhq-yoda.pkl",
"zombie": "ffhq-zombie.pkl",
"cat_in_Zootopia": "cat-cat_in_Zootopia.pkl",
"fox_in_Zootopia": "cat-fox_in_Zootopia.pkl",
"golden_aluminum_animal": "cat-golden_aluminum_animal.pkl",
}
manip_model_ckpts = {"super_mario": "ffhq-super_mario.pkl",
"lego": "ffhq-lego.pkl",
"neanderthal": "ffhq-neanderthal.pkl",
"orc": "ffhq-orc.pkl",
"pixar": "ffhq-pixar.pkl",
"skeleton": "ffhq-skeleton.pkl",
"stone_golem": "ffhq-stone_golem.pkl",
"tekken": "ffhq-tekken.pkl",
"greek_statue": "ffhq-greek_statue.pkl",
"yoda": "ffhq-yoda.pkl",
"zombie": "ffhq-zombie.pkl",
"elf": "ffhq-elf.pkl",
}
def TextGuidedImageTo3D(intermediate, img, model_name, num_inversion_steps, truncation):
if img != intermediate.input_img:
if os.path.exists('input_imgs_gradio'):
shutil.rmtree('input_imgs_gradio')
os.makedirs('input_imgs_gradio', exist_ok=True)
img.save('input_imgs_gradio/input.png')
intermediate.input_img = img
now = datetime.now()
intermediate.input_img_time = now.strftime('%Y-%m-%d_%H:%M:%S')
all_model_names = manip_model_ckpts.keys()
generator_type = 'ffhq'
if model_name == 'all':
_no_video_models = []
for _model_name in all_model_names:
if not os.path.exists(f'test_runs/manip_3D_recon_gradio_{intermediate.input_img_time}/4_manip_result/finetuned___{model_ckpts[_model_name]}__input_inv.mp4'):
print()
_no_video_models.append(_model_name)
model_names_command = ''
for _model_name in _no_video_models:
if not os.path.exists(f'finetuned/{model_ckpts[_model_name]}'):
command = f"""wget https://huggingface.co/gwang-kim/datid3d-finetuned-eg3d-models/resolve/main/finetuned_models/{model_ckpts[_model_name]} -O finetuned/{model_ckpts[_model_name]}
"""
os.system(command)
model_names_command += f"finetuned/{model_ckpts[_model_name]} "
w_pths = sorted(glob(f'test_runs/manip_3D_recon_gradio_{intermediate.input_img_time}/3_inversion_result/*.pt'))
if len(w_pths) == 0:
mode = 'manip'
else:
mode = 'manip_from_inv'
if len(_no_video_models) > 0:
command = f"""python datid3d_test.py --mode {mode} \
--indir='input_imgs_gradio' \
--generator_type={generator_type} \
--outdir='test_runs' \
--trunc={truncation} \
--network {model_names_command} \
--num_inv_steps={num_inversion_steps} \
--down_src_eg3d_from_nvidia=False \
--name_tag='_gradio_{intermediate.input_img_time}' \
--shape=False \
--w_frames 60
"""
print(command)
os.system(command)
aligned_img_pth = sorted(glob(f'test_runs/manip_3D_recon_gradio_{intermediate.input_img_time}/2_pose_result/*.png'))[0]
aligned_img = Image.open(aligned_img_pth)
result_imgs = []
for _model_name in all_model_names:
img_pth = f'test_runs/manip_3D_recon_gradio_{intermediate.input_img_time}/4_manip_result/finetuned___{model_ckpts[_model_name]}__input_inv.png'
result_imgs.append(read_image(img_pth))
result_grid_pt = make_grid(result_imgs, nrow=1)
result_img = F.to_pil_image(result_grid_pt)
else:
if not os.path.exists(f'finetuned/{model_ckpts[model_name]}'):
command = f"""wget https://huggingface.co/gwang-kim/datid3d-finetuned-eg3d-models/resolve/main/finetuned_models/{model_ckpts[model_name]} -O finetuned/{model_ckpts[model_name]}
"""
os.system(command)
if not os.path.exists(f'test_runs/manip_3D_recon_gradio_{intermediate.input_img_time}/4_manip_result/finetuned___{model_ckpts[model_name]}__input_inv.mp4'):
w_pths = sorted(glob(f'test_runs/manip_3D_recon_gradio_{intermediate.input_img_time}/3_inversion_result/*.pt'))
if len(w_pths) == 0:
mode = 'manip'
else:
mode = 'manip_from_inv'
command = f"""python datid3d_test.py --mode {mode} \
--indir='input_imgs_gradio' \
--generator_type={generator_type} \
--outdir='test_runs' \
--trunc={truncation} \
--network finetuned/{model_ckpts[model_name]} \
--num_inv_steps={num_inversion_steps} \
--down_src_eg3d_from_nvidia=0 \
--name_tag='_gradio_{intermediate.input_img_time}' \
--shape=False
--w_frames 60"""
print(command)
os.system(command)
aligned_img_pth = sorted(glob(f'test_runs/manip_3D_recon_gradio_{intermediate.input_img_time}/2_pose_result/*.png'))[0]
aligned_img = Image.open(aligned_img_pth)
result_img_pth = sorted(glob(f'test_runs/manip_3D_recon_gradio_{intermediate.input_img_time}/4_manip_result/*{model_ckpts[model_name]}*.png'))[0]
result_img = Image.open(result_img_pth)
if model_name=='all':
result_video_pth = f'test_runs/manip_3D_recon_gradio_{intermediate.input_img_time}/4_manip_result/finetuned___ffhq-all__input_inv.mp4'
if os.path.exists(result_video_pth):
os.remove(result_video_pth)
command = 'ffmpeg '
for _model_name in all_model_names:
command += f'-i test_runs/manip_3D_recon_gradio_{intermediate.input_img_time}/4_manip_result/finetuned___ffhq-{_model_name}.pkl__input_inv.mp4 '
command += '-filter_complex "[0:v]scale=2*iw:-1[v0];[1:v]scale=2*iw:-1[v1];[2:v]scale=2*iw:-1[v2];[3:v]scale=2*iw:-1[v3];[4:v]scale=2*iw:-1[v4];[5:v]scale=2*iw:-1[v5];[6:v]scale=2*iw:-1[v6];[7:v]scale=2*iw:-1[v7];[8:v]scale=2*iw:-1[v8];[9:v]scale=2*iw:-1[v9];[10:v]scale=2*iw:-1[v10];[11:v]scale=2*iw:-1[v11];[v0][v1][v2][v3][v4][v5][v6][v7][v8][v9][v10][v11]xstack=inputs=12:layout=0_0|w0_0|w0+w1_0|w0+w1+w2_0|0_h0|w4_h0|w4+w5_h0|w4+w5+w6_h0|0_h0+h4|w8_h0+h4|w8+w9_h0+h4|w8+w9+w10_h0+h4" '
command += f" -vcodec libx264 {result_video_pth}"
print()
print(command)
os.system(command)
else:
result_video_pth = sorted(glob(f'test_runs/manip_3D_recon_gradio_{intermediate.input_img_time}/4_manip_result/*{model_ckpts[model_name]}*.mp4'))[0]
return aligned_img, result_img, result_video_pth
def SampleImage(model_name, num_samples, truncation, seed):
seed_list = np.random.RandomState(seed).choice(np.arange(10000), num_samples).tolist()
seeds = ''
for seed in seed_list:
seeds += f'{seed},'
seeds = seeds[:-1]
if model_name in ["fox_in_Zootopia", "cat_in_Zootopia", "golden_aluminum_animal"]:
generator_type = 'cat'
else:
generator_type = 'ffhq'
if not os.path.exists(f'finetuned/{model_ckpts[model_name]}'):
command = f"""wget https://huggingface.co/gwang-kim/datid3d-finetuned-eg3d-models/resolve/main/finetuned_models/{model_ckpts[model_name]} -O finetuned/{model_ckpts[model_name]}
"""
os.system(command)
command = f"""python datid3d_test.py --mode image \
--generator_type={generator_type} \
--outdir='test_runs' \
--seeds={seeds} \
--trunc={truncation} \
--network=finetuned/{model_ckpts[model_name]} \
--shape=False"""
print(command)
os.system(command)
result_img_pths = sorted(glob(f'test_runs/image/*{model_ckpts[model_name]}*.png'))
result_imgs = []
for img_pth in result_img_pths:
result_imgs.append(read_image(img_pth))
result_grid_pt = make_grid(result_imgs, nrow=1)
result_grid_pil = F.to_pil_image(result_grid_pt)
return result_grid_pil
def SampleVideo(model_name, grid_height, truncation, seed):
seed_list = np.random.RandomState(seed).choice(np.arange(10000), grid_height**2).tolist()
seeds = ''
for seed in seed_list:
seeds += f'{seed},'
seeds = seeds[:-1]
if model_name in ["fox_in_Zootopia", "cat_in_Zootopia", "golden_aluminum_animal"]:
generator_type = 'cat'
else:
generator_type = 'ffhq'
if not os.path.exists(f'finetuned/{model_ckpts[model_name]}'):
command = f"""wget https://huggingface.co/gwang-kim/datid3d-finetuned-eg3d-models/resolve/main/finetuned_models/{model_ckpts[model_name]} -O finetuned/{model_ckpts[model_name]}
"""
os.system(command)
command = f"""python datid3d_test.py --mode video \
--generator_type={generator_type} \
--outdir='test_runs' \
--seeds={seeds} \
--trunc={truncation} \
--grid={grid_height}x{grid_height} \
--network=finetuned/{model_ckpts[model_name]} \
--shape=False"""
print(command)
os.system(command)
result_video_pth = sorted(glob(f'test_runs/video/*{model_ckpts[model_name]}*.mp4'))[0]
return result_video_pth
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true', help="public url")
args = parser.parse_args()
demo = gr.Blocks(title="DATID-3D Interactive Demo")
os.makedirs('finetuned', exist_ok=True)
intermediate = Intermediate()
with demo:
gr.Markdown("# DATID-3D Interactive Demo")
gr.Markdown(
"### Demo of the CVPR 2023 paper \"DATID-3D: Diversity-Preserved Domain Adaptation Using Text-to-Image Diffusion for 3D Generative Model\"")
with gr.Tab("Text-guided Manipulated 3D reconstruction"):
gr.Markdown("Text-guided Image-to-3D Translation")
with gr.Row():
with gr.Column(scale=1, variant='panel'):
t_image_input = gr.Image(source='upload', type="pil", interactive=True)
t_model_name = gr.Radio(["super_mario", "lego", "neanderthal", "orc",
"pixar", "skeleton", "stone_golem","tekken",
"greek_statue", "yoda", "zombie", "elf", "all"],
label="Model fine-tuned through DATID-3D",
value="super_mario", interactive=True)
with gr.Accordion("Advanced Options", open=False):
t_truncation = gr.Slider(label="Truncation psi", minimum=0, maximum=1.0, step=0.01, randomize=False, value=0.8)
t_num_inversion_steps = gr.Slider(200, 1000, value=200, step=1, label='Number of steps for the invresion')
with gr.Row():
t_button_gen_result = gr.Button("Generate Result", variant='primary')
# t_button_gen_video = gr.Button("Generate Video", variant='primary')
# t_button_gen_image = gr.Button("Generate Image", variant='secondary')
with gr.Row():
t_align_image_result = gr.Image(label="Alignment result", interactive=False)
with gr.Column(scale=1, variant='panel'):
with gr.Row():
t_video_result = gr.Video(label="Video result", interactive=False)
with gr.Row():
t_image_result = gr.Image(label="Image result", interactive=False)
with gr.Tab("Sample Images"):
with gr.Row():
with gr.Column(scale=1, variant='panel'):
i_model_name = gr.Radio(
["elf", "greek_statue", "hobbit", "lego", "masquerade", "neanderthal", "orc", "pixar",
"skeleton", "stone_golem", "super_mario", "tekken", "yoda", "zombie", "fox_in_Zootopia",
"cat_in_Zootopia", "golden_aluminum_animal"],
label="Model fine-tuned through DATID-3D",
value="super_mario", interactive=True)
i_num_samples = gr.Slider(0, 20, value=4, step=1, label='Number of samples')
i_seed = gr.Slider(label="Seed", minimum=0, maximum=1000000000, step=1, value=1235)
with gr.Accordion("Advanced Options", open=False):
i_truncation = gr.Slider(label="Truncation psi", minimum=0, maximum=1.0, step=0.01, randomize=False, value=0.8)
with gr.Row():
i_button_gen_image = gr.Button("Generate Image", variant='primary')
with gr.Column(scale=1, variant='panel'):
with gr.Row():
i_image_result = gr.Image(label="Image result", interactive=False)
with gr.Tab("Sample Videos"):
with gr.Row():
with gr.Column(scale=1, variant='panel'):
v_model_name = gr.Radio(
["elf", "greek_statue", "hobbit", "lego", "masquerade", "neanderthal", "orc", "pixar",
"skeleton", "stone_golem", "super_mario", "tekken", "yoda", "zombie", "fox_in_Zootopia",
"cat_in_Zootopia", "golden_aluminum_animal"],
label="Model fine-tuned through DATID-3D",
value="super_mario", interactive=True)
v_grid_height = gr.Slider(0, 5, value=2, step=1,label='Height of the grid')
v_seed = gr.Slider(label="Seed", minimum=0, maximum=1000000000, step=1, value=1235)
with gr.Accordion("Advanced Options", open=False):
v_truncation = gr.Slider(label="Truncation psi", minimum=0, maximum=1.0, step=0.01, randomize=False,
value=0.8)
with gr.Row():
v_button_gen_video = gr.Button("Generate Video", variant='primary')
with gr.Column(scale=1, variant='panel'):
with gr.Row():
v_video_result = gr.Video(label="Video result", interactive=False)
# functions
t_button_gen_result.click(fn=partial(TextGuidedImageTo3D, intermediate),
inputs=[t_image_input, t_model_name, t_num_inversion_steps, t_truncation],
outputs=[t_align_image_result, t_image_result, t_video_result])
i_button_gen_image.click(fn=SampleImage,
inputs=[i_model_name, i_num_samples, i_truncation, i_seed],
outputs=[i_image_result])
v_button_gen_video.click(fn=SampleVideo,
inputs=[i_model_name, v_grid_height, v_truncation, v_seed],
outputs=[v_video_result])
demo.queue(concurrency_count=1)
demo.launch(share=args.share)
|