File size: 2,429 Bytes
f12ab4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
Pre-trained checkpoints can be found on the [NGC Catalog](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/research/models/eg3d).
Brief descriptions of models and the commands used to train them are found below.
---
# FFHQ
**ffhq512-64.pkl**
FFHQ 512, trained with neural rendering resolution of 64x64.
```.bash
# Train with FFHQ from scratch with raw neural rendering resolution=64, using 8 GPUs.
python train.py --outdir=~/training-runs --cfg=ffhq --data=~/datasets/FFHQ_512.zip \
--gpus=8 --batch=32 --gamma=1 --gen_pose_cond=True
```
**ffhq512-128.pkl**
Fine-tune FFHQ 512, with neural rendering resolution of 128x128.
```.bash
# Second stage finetuning of FFHQ to 128 neural rendering resolution.
python train.py --outdir=~/training-runs --cfg=ffhq --data=~/datasets/FFHQ_512.zip \
--resume=ffhq-64.pkl \
--gpus=8 --batch=32 --gamma=1 --gen_pose_cond=True --neural_rendering_resolution_final=128 --kimg=2000
```
## FFHQ Rebalanced
Same as the models above, but fine-tuned using a rebalanced version of FFHQ that has a more uniform pose distribution. Compared to models trained on standard FFHQ, these models should produce better 3D shapes and better renderings from steep angles.
**ffhqrebalanced512-64.pkl**
```.bash
# Finetune with rebalanced FFHQ at rendering resolution 64.
python train.py --outdir=~/training-runs --cfg=ffhq --data=~/datasets/FFHQ_rebalanced_512.zip \
--resume=ffhq-64.pkl \
--gpus=8 --batch=32 --gamma=1 --gen_pose_cond=True --gpc_reg_prob=0.8
```
**ffhqrebalanced512-128.pkl**
```.bash
# Finetune with rebalanced FFHQ at 128 neural rendering resolution.
python train.py --outdir=~/training-runs --cfg=ffhq --data=~/datasets/FFHQ_rebalanced_512.zip \
--resume=ffhq-rebalanced-64.pkl \
--gpus=8 --batch=32 --gamma=1 --gen_pose_cond=True --gpc_reg_prob=0.8 --neural_rendering_resolution_final=128
```
# AFHQ Cats
**afhqcats512-128.pkl**
```.bash
# Train with AFHQ, finetuning from FFHQ with ADA, using 8 GPUs.
python train.py --outdir=~/training-runs --cfg=afhq --data=~/datasets/afhq.zip \
--resume=ffhq-64.pkl \
--gpus=8 --batch=32 --gamma=5 --aug=ada --gen_pose_cond=True --gpc_reg_prob=0.8 --neural_rendering_resolution_final=128
```
# Shapenet
**shapenetcars128-64.pkl**
```.bash
# Train with Shapenet from scratch, using 8 GPUs.
python train.py --outdir=~/training-runs --cfg=shapenet --data=~/datasets/cars_train.zip \
--gpus=8 --batch=32 --gamma=0.3
``` |