File size: 8,305 Bytes
f12ab4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import numpy as np
import os
import sys
import pathlib
import util
import tensorflow as tf
sys.path.insert(0, os.path.join(sys.path[0], '../..')) # for nvdiffrast
import nvdiffrast.tensorflow as dr
#----------------------------------------------------------------------------
# Cube shape fitter.
#----------------------------------------------------------------------------
def fit_cube(max_iter = 5000,
resolution = 4,
discontinuous = False,
repeats = 1,
log_interval = 10,
display_interval = None,
display_res = 512,
out_dir = '.',
log_fn = None,
imgsave_interval = None,
imgsave_fn = None):
if out_dir:
os.makedirs(out_dir, exist_ok=True)
datadir = f'{pathlib.Path(__file__).absolute().parents[1]}/data'
fn = 'cube_%s.npz' % ('d' if discontinuous else 'c')
with np.load(f'{datadir}/{fn}') as f:
pos_idx, vtxp, col_idx, vtxc = f.values()
print("Mesh has %d triangles and %d vertices." % (pos_idx.shape[0], vtxp.shape[0]))
# Transformation matrix input to TF graph.
mtx_in = tf.placeholder(tf.float32, [4, 4])
# Setup TF graph for reference.
vtxw = np.concatenate([vtxp, np.ones([vtxp.shape[0], 1])], axis=1).astype(np.float32)
pos_clip = tf.matmul(vtxw, mtx_in, transpose_b=True)[tf.newaxis, ...]
rast_out, _ = dr.rasterize(pos_clip, pos_idx, resolution=[resolution, resolution], output_db=False)
color, _ = dr.interpolate(vtxc[tf.newaxis, ...], rast_out, col_idx)
color = dr.antialias(color, rast_out, pos_clip, pos_idx)
# Optimized variables.
vtxc_opt = tf.get_variable('vtxc', initializer=tf.zeros_initializer(), shape=vtxc.shape)
vtxp_opt = tf.get_variable('vtxp', initializer=tf.zeros_initializer(), shape=vtxp.shape)
# Optimization variable setters for initialization.
vtxc_opt_in = tf.placeholder(tf.float32, vtxc.shape)
vtxp_opt_in = tf.placeholder(tf.float32, vtxp.shape)
opt_set = tf.group(tf.assign(vtxc_opt, vtxc_opt_in), tf.assign(vtxp_opt, vtxp_opt_in))
# Setup TF graph for what we optimize result.
vtxw_opt = tf.concat([vtxp_opt, tf.ones([vtxp.shape[0], 1], tf.float32)], axis=1)
pos_clip_opt = tf.matmul(vtxw_opt, mtx_in, transpose_b=True)[tf.newaxis, ...]
rast_out_opt, _ = dr.rasterize(pos_clip_opt, pos_idx, resolution=[resolution, resolution], output_db=False)
color_opt, _ = dr.interpolate(vtxc_opt[tf.newaxis, ...], rast_out_opt, col_idx)
color_opt = dr.antialias(color_opt, rast_out_opt, pos_clip_opt, pos_idx)
# Image-space loss and optimizer.
loss = tf.reduce_mean((color_opt - color)**2)
lr_in = tf.placeholder(tf.float32, [])
train_op = tf.train.AdamOptimizer(lr_in, 0.9, 0.999).minimize(loss, var_list=[vtxp_opt, vtxc_opt])
# Setup TF graph for display.
rast_out_disp, _ = dr.rasterize(pos_clip_opt, pos_idx, resolution=[display_res, display_res], output_db=False)
color_disp, _ = dr.interpolate(vtxc_opt[tf.newaxis, ...], rast_out_disp, col_idx)
color_disp = dr.antialias(color_disp, rast_out_disp, pos_clip_opt, pos_idx)
rast_out_disp_ref, _ = dr.rasterize(pos_clip, pos_idx, resolution=[display_res, display_res], output_db=False)
color_disp_ref, _ = dr.interpolate(vtxc[tf.newaxis, ...], rast_out_disp_ref, col_idx)
color_disp_ref = dr.antialias(color_disp_ref, rast_out_disp_ref, pos_clip, pos_idx)
# Geometric error calculation
geom_loss = tf.reduce_mean(tf.reduce_sum((tf.abs(vtxp_opt) - .5)**2, axis=1)**0.5)
# Open log file.
log_file = open(out_dir + '/' + log_fn, 'wt') if log_fn else None
# Repeats.
for rep in range(repeats):
# Optimize.
ang = 0.0
gl_avg = []
util.init_uninitialized_vars()
for it in range(max_iter + 1):
# Initialize optimization.
if it == 0:
vtxp_init = np.random.uniform(-0.5, 0.5, size=vtxp.shape) + vtxp
vtxc_init = np.random.uniform(0.0, 1.0, size=vtxc.shape)
util.run(opt_set, {vtxc_opt_in: vtxc_init.astype(np.float32), vtxp_opt_in: vtxp_init.astype(np.float32)})
# Learning rate ramp.
lr = 1e-2
lr = lr * max(0.01, 10**(-it*0.0005))
# Random rotation/translation matrix for optimization.
r_rot = util.random_rotation_translation(0.25)
# Smooth rotation for display.
a_rot = np.matmul(util.rotate_x(-0.4), util.rotate_y(ang))
# Modelview and modelview + projection matrices.
proj = util.projection(x=0.4)
r_mv = np.matmul(util.translate(0, 0, -3.5), r_rot)
r_mvp = np.matmul(proj, r_mv).astype(np.float32)
a_mv = np.matmul(util.translate(0, 0, -3.5), a_rot)
a_mvp = np.matmul(proj, a_mv).astype(np.float32)
# Run training and measure geometric error.
gl_val, _ = util.run([geom_loss, train_op], {mtx_in: r_mvp, lr_in: lr})
gl_avg.append(gl_val)
# Print/save log.
if log_interval and (it % log_interval == 0):
gl_val, gl_avg = np.mean(np.asarray(gl_avg)), []
s = ("rep=%d," % rep) if repeats > 1 else ""
s += "iter=%d,err=%f" % (it, gl_val)
print(s)
if log_file:
log_file.write(s + "\n")
# Show/save image.
display_image = display_interval and (it % display_interval == 0)
save_image = imgsave_interval and (it % imgsave_interval == 0)
if display_image or save_image:
ang = ang + 0.1
img_o = util.run(color_opt, {mtx_in: r_mvp})[0]
img_b = util.run(color, {mtx_in: r_mvp})[0]
img_d = util.run(color_disp, {mtx_in: a_mvp})[0]
img_r = util.run(color_disp_ref, {mtx_in: a_mvp})[0]
scl = display_res // img_o.shape[0]
img_b = np.repeat(np.repeat(img_b, scl, axis=0), scl, axis=1)
img_o = np.repeat(np.repeat(img_o, scl, axis=0), scl, axis=1)
result_image = np.concatenate([img_o, img_b, img_d, img_r], axis=1)
if display_image:
util.display_image(result_image, size=display_res, title='%d / %d' % (it, max_iter))
if save_image:
util.save_image(out_dir + '/' + (imgsave_fn % it), result_image)
# All repeats done.
if log_file:
log_file.close()
#----------------------------------------------------------------------------
# Main function.
#----------------------------------------------------------------------------
def main():
display_interval = 0
discontinuous = False
resolution = 0
def usage():
print("Usage: python cube.py [-v] [-discontinuous] resolution")
exit()
for a in sys.argv[1:]:
if a == '-v':
display_interval = 100
elif a == '-discontinuous':
discontinuous = True
elif a.isdecimal():
resolution = int(a)
else:
usage()
if resolution <= 0:
usage()
# Initialize TensorFlow.
util.init_tf()
# Run.
out_dir = 'out/cube_%s_%d' % (('d' if discontinuous else 'c'), resolution)
fit_cube(max_iter=5000, resolution=resolution, discontinuous=discontinuous, log_interval=10, display_interval=display_interval, out_dir=out_dir, log_fn='log.txt', imgsave_interval=1000, imgsave_fn='img_%06d.png')
# Done.
print("Done.")
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------
|