File size: 7,750 Bytes
f12ab4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import numpy as np
import tensorflow as tf
import os
import sys
import pathlib

import util

sys.path.insert(0, os.path.join(sys.path[0], '../..')) # for nvdiffrast
import nvdiffrast.tensorflow as dr

#----------------------------------------------------------------------------
# Texture learning with/without mipmaps.
#----------------------------------------------------------------------------

def fit_earth(max_iter          = 20000,
              log_interval      = 10,
              display_interval  = None,
              display_res       = 1024,
              enable_mip        = True,
              res               = 512,
              ref_res           = 4096,
              lr_base           = 1e-2,
              lr_ramp           = 0.1,
              out_dir           = '.',
              log_fn            = None,
              texsave_interval  = None,
              texsave_fn        = None,
              imgsave_interval  = None,
              imgsave_fn        = None):

    if out_dir:
        os.makedirs(out_dir, exist_ok=True)

    # Mesh and texture adapted from "3D Earth Photorealistic 2K" model at
    # https://www.turbosquid.com/3d-models/3d-realistic-earth-photorealistic-2k-1279125
    datadir = f'{pathlib.Path(__file__).absolute().parents[1]}/data'
    with np.load(f'{datadir}/earth.npz') as f:
        pos_idx, pos, uv_idx, uv, tex = f.values()
    tex = tex.astype(np.float32)/255.0
    max_mip_level = 9 # Texture is a 4x3 atlas of 512x512 maps.
    print("Mesh has %d triangles and %d vertices." % (pos_idx.shape[0], pos.shape[0]))

    # Transformation matrix input to TF graph.
    mtx_in = tf.placeholder(tf.float32, [4, 4])

    # Learned texture.
    tex_var = tf.get_variable('tex', initializer=tf.constant_initializer(0.2), shape=tex.shape)

    # Setup TF graph for reference rendering in high resolution.
    pos_clip = tf.matmul(pos, mtx_in, transpose_b=True)[tf.newaxis, ...]
    rast_out, rast_out_db = dr.rasterize(pos_clip, pos_idx, [ref_res, ref_res])
    texc, texd = dr.interpolate(uv[tf.newaxis, ...], rast_out, uv_idx, rast_db=rast_out_db, diff_attrs='all')
    color = dr.texture(tex[np.newaxis], texc, texd, filter_mode='linear-mipmap-linear', max_mip_level=max_mip_level)
    color = color * tf.clip_by_value(rast_out[..., -1:], 0, 1) # Mask out background.
    
    # Reduce the reference to correct size.
    while color.shape[1] > res:
        color = util.bilinear_downsample(color)

    # TF Graph for rendered candidate.
    if enable_mip:
        # With mipmaps.
        rast_out_opt, rast_out_db_opt = dr.rasterize(pos_clip, pos_idx, [res, res])
        texc_opt, texd_opt = dr.interpolate(uv[tf.newaxis, ...], rast_out_opt, uv_idx, rast_db=rast_out_db_opt, diff_attrs='all')
        color_opt = dr.texture(tex_var[np.newaxis], texc_opt, texd_opt, filter_mode='linear-mipmap-linear', max_mip_level=max_mip_level)
    else:
        # No mipmaps: no image-space derivatives anywhere.
        rast_out_opt, _ = dr.rasterize(pos_clip, pos_idx, [res, res], output_db=False)
        texc_opt, _ = dr.interpolate(uv[tf.newaxis, ...], rast_out_opt, uv_idx)
        color_opt = dr.texture(tex_var[np.newaxis], texc_opt, filter_mode='linear')    
    color_opt = color_opt * tf.clip_by_value(rast_out_opt[..., -1:], 0, 1) # Mask out background.

    # Measure only relevant portions of texture when calculating texture PSNR.
    loss = tf.reduce_mean((color - color_opt)**2)
    texmask = np.zeros_like(tex)
    tr = tex.shape[1]//4
    texmask[tr+13:2*tr-13, 25:-25, :] += 1.0
    texmask[25:-25, tr+13:2*tr-13, :] += 1.0
    texloss = (tf.reduce_sum(texmask * (tex - tex_var)**2)/np.sum(texmask))**0.5 # RMSE within masked area.

    # Training driven by image-space loss.
    lr_in = tf.placeholder(tf.float32, [])
    train_op = tf.train.AdamOptimizer(lr_in, 0.9, 0.99).minimize(loss, var_list=[tex_var])

    # Open log file.
    log_file = open(out_dir + '/' + log_fn, 'wt') if log_fn else None

    # Render.
    ang = 0.0
    util.init_uninitialized_vars()
    texloss_avg = []
    for it in range(max_iter + 1):
        lr = lr_base * lr_ramp**(float(it)/float(max_iter))

        # Random rotation/translation matrix for optimization.
        r_rot = util.random_rotation_translation(0.25)

        # Smooth rotation for display.
        ang = ang + 0.01
        a_rot = np.matmul(util.rotate_x(-0.4), util.rotate_y(ang))
        dist = np.random.uniform(0.0, 48.5)

        # Modelview and modelview + projection matrices.
        proj  = util.projection(x=0.4, n=1.0, f=200.0)
        r_mv  = np.matmul(util.translate(0, 0, -1.5 - dist), r_rot)
        r_mvp = np.matmul(proj, r_mv).astype(np.float32)
        a_mv  = np.matmul(util.translate(0, 0, -3.5), a_rot)
        a_mvp = np.matmul(proj, a_mv).astype(np.float32)
    
        # Run training and measure texture-space RMSE loss.
        texloss_val, _ = util.run([texloss, train_op], {mtx_in: r_mvp, lr_in: lr})
        texloss_avg.append(texloss_val)

        # Print/save log.
        if log_interval and (it % log_interval == 0):
            texloss_val, texloss_avg = np.mean(np.asarray(texloss_avg)), []
            psnr = -10.0 * np.log10(texloss_val**2) # PSNR based on average RMSE.
            s = "iter=%d,loss=%f,psnr=%f" % (it, texloss_val, psnr)
            print(s)
            if log_file:
                log_file.write(s + '\n')

        # Show/save result images/textures.
        display_image = display_interval and (it % display_interval) == 0
        save_image = imgsave_interval and (it % imgsave_interval) == 0
        save_texture = texsave_interval and (it % texsave_interval) == 0

        if display_image or save_image:
            result_image = util.run(color_opt, {mtx_in: a_mvp})[0]
        if display_image:
            util.display_image(result_image, size=display_res, title='%d / %d' % (it, max_iter))
        if save_image:
            util.save_image(out_dir + '/' + (imgsave_fn % it), result_image)
        if save_texture:
            util.save_image(out_dir + '/' + (texsave_fn % it), util.run(tex_var)[::-1])

    # Done.
    if log_file:
        log_file.close()

#----------------------------------------------------------------------------
# Main function.
#----------------------------------------------------------------------------

def main():
    display_interval = 0
    enable_mip = None

    def usage():
        print("Usage: python earth.py [-v] [-mip|-nomip]")
        exit()

    for a in sys.argv[1:]:
        if   a == '-v':     display_interval = 10
        elif a == '-mip':   enable_mip = True
        elif a == '-nomip': enable_mip = False
        else:               usage()

    if enable_mip is None:
        usage()

    # Initialize TensorFlow.        
    util.init_tf()

    # Run.
    out_dir = 'out/earth_mip' if enable_mip else 'out/earth_nomip'
    fit_earth(max_iter=20000, log_interval=10, display_interval=display_interval, enable_mip=enable_mip, out_dir=out_dir, log_fn='log.txt', texsave_interval=1000, texsave_fn='tex_%06d.png', imgsave_interval=1000, imgsave_fn='img_%06d.png')

    # Done.
    print("Done.")

#----------------------------------------------------------------------------

if __name__ == "__main__":
    main()

#----------------------------------------------------------------------------