File size: 8,236 Bytes
f12ab4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import numpy as np
import tensorflow as tf
import os
import sys
import pathlib

import util

sys.path.insert(0, os.path.join(sys.path[0], '../..')) # for nvdiffrast
import nvdiffrast.tensorflow as dr

#----------------------------------------------------------------------------
# Environment map and Phong BRDF learning.
#----------------------------------------------------------------------------

def fit_env_phong(max_iter          = 1000,
                  log_interval      = 10,
                  display_interval  = None,
                  display_res       = 1024,
                  res               = 1024,
                  lr_base           = 1e-2,
                  lr_ramp           = 1.0,
                  out_dir           = '.',
                  log_fn            = None,
                  imgsave_interval  = None,
                  imgsave_fn        = None):

    if out_dir:
        os.makedirs(out_dir, exist_ok=True)

    # Texture adapted from https://github.com/WaveEngine/Samples/tree/master/Materials/EnvironmentMap/Content/Assets/CubeMap.cubemap
    datadir = f'{pathlib.Path(__file__).absolute().parents[1]}/data'
    with np.load(f'{datadir}/envphong.npz') as f:
        pos_idx, pos, normals, env = f.values()
    env = env.astype(np.float32)/255.0
    print("Mesh has %d triangles and %d vertices." % (pos_idx.shape[0], pos.shape[0]))

    # Target Phong parameters.
    phong_rgb = np.asarray([1.0, 0.8, 0.6], np.float32)
    phong_exp = 25.0

    # Inputs to TF graph.
    mtx_in = tf.placeholder(tf.float32, [4, 4])
    invmtx_in = tf.placeholder(tf.float32, [4, 4]) # Inverse.
    campos_in = tf.placeholder(tf.float32, [3]) # Camera position in world space.
    lightdir_in = tf.placeholder(tf.float32, [3]) # Light direction.

    # Learned variables: environment maps, phong color, phong exponent.
    env_var = tf.get_variable('env_var', initializer=tf.constant_initializer(0.5), shape=env.shape)
    phong_var_raw = tf.get_variable('phong_var', initializer=tf.random_uniform_initializer(0.0, 1.0), shape=[4]) # R, G, B, exp.
    phong_var = phong_var_raw * [1.0, 1.0, 1.0, 10.0] # Faster learning rate for the exponent.

    # Transform and rasterize.
    viewvec = pos[..., :3] - campos_in[np.newaxis, np.newaxis, :] # View vectors at vertices.
    reflvec = viewvec - 2.0 * normals[tf.newaxis, ...] * tf.reduce_sum(normals[tf.newaxis, ...] * viewvec, axis=-1, keepdims=True) # Reflection vectors at vertices.
    reflvec = reflvec / tf.reduce_sum(reflvec**2, axis=-1, keepdims=True)**0.5 # Normalize.
    pos_clip = tf.matmul(pos, mtx_in, transpose_b=True)[tf.newaxis, ...]
    rast_out, rast_out_db = dr.rasterize(pos_clip, pos_idx, [res, res])
    refl, refld = dr.interpolate(reflvec, rast_out, pos_idx, rast_db=rast_out_db, diff_attrs='all') # Interpolated reflection vectors.
    
    # Phong light.
    refl = refl / tf.reduce_sum(refl**2, axis=-1, keepdims=True)**0.5  # Normalize.
    ldotr = tf.reduce_sum(-lightdir_in * refl, axis=-1, keepdims=True) # L dot R.

    # Reference color. No need for AA because we are not learning geometry.
    env = np.stack(env)[:, ::-1]
    color = dr.texture(env[np.newaxis, ...], refl, refld, filter_mode='linear-mipmap-linear', boundary_mode='cube')
    color = tf.reduce_sum(tf.stack(color), axis=0)
    color = color + phong_rgb * tf.maximum(0.0, ldotr) ** phong_exp # Phong.
    color = tf.maximum(color, 1.0 - tf.clip_by_value(rast_out[..., -1:], 0, 1)) # White background.

    # Candidate rendering same up to this point, but uses learned texture and Phong parameters instead.
    color_opt = dr.texture(env_var[tf.newaxis, ...], refl, uv_da=refld, filter_mode='linear-mipmap-linear', boundary_mode='cube')
    color_opt = tf.reduce_sum(tf.stack(color_opt), axis=0)
    color_opt = color_opt + phong_var[:3] * tf.maximum(0.0, ldotr) ** phong_var[3] # Phong.
    color_opt = tf.maximum(color_opt, 1.0 - tf.clip_by_value(rast_out[..., -1:], 0, 1)) # White background.

    # Training.
    loss = tf.reduce_mean((color - color_opt)**2) # L2 pixel loss.
    lr_in = tf.placeholder(tf.float32, [])
    train_op = tf.train.AdamOptimizer(lr_in, 0.9, 0.99).minimize(loss, var_list=[env_var, phong_var_raw])

    # Open log file.
    log_file = open(out_dir + '/' + log_fn, 'wt') if log_fn else None

    # Render.
    ang = 0.0
    util.init_uninitialized_vars()
    imgloss_avg, phong_avg = [], []
    for it in range(max_iter + 1):
        lr = lr_base * lr_ramp**(float(it)/float(max_iter))

        # Random rotation/translation matrix for optimization.
        r_rot = util.random_rotation_translation(0.25)

        # Smooth rotation for display.
        ang = ang + 0.01
        a_rot = np.matmul(util.rotate_x(-0.4), util.rotate_y(ang))

        # Modelview and modelview + projection matrices.
        proj  = util.projection(x=0.4, n=1.0, f=200.0)
        r_mv  = np.matmul(util.translate(0, 0, -3.5), r_rot)
        r_mvp = np.matmul(proj, r_mv).astype(np.float32)
        a_mv  = np.matmul(util.translate(0, 0, -3.5), a_rot)
        a_mvp = np.matmul(proj, a_mv).astype(np.float32)
    
        # Solve camera positions.
        a_campos = np.linalg.inv(a_mv)[:3, 3]
        r_campos = np.linalg.inv(r_mv)[:3, 3]

        # Random light direction.        
        lightdir = np.random.normal(size=[3])
        lightdir /= np.linalg.norm(lightdir) + 1e-8

        # Run training and measure image-space RMSE loss.
        imgloss_val, phong_val, _ = util.run([loss, phong_var, train_op], {mtx_in: r_mvp, invmtx_in: np.linalg.inv(r_mvp), campos_in: r_campos, lightdir_in: lightdir, lr_in: lr})
        imgloss_avg.append(imgloss_val**0.5)
        phong_avg.append(phong_val)

        # Print/save log.
        if log_interval and (it % log_interval == 0):
            imgloss_val, imgloss_avg = np.mean(np.asarray(imgloss_avg, np.float32)), []
            phong_val, phong_avg = np.mean(np.asarray(phong_avg, np.float32), axis=0), []
            phong_rgb_rmse = np.mean((phong_val[:3] - phong_rgb)**2)**0.5
            phong_exp_rel_err = np.abs(phong_val[3] - phong_exp)/phong_exp
            s = "iter=%d,phong_rgb_rmse=%f,phong_exp_rel_err=%f,img_rmse=%f" % (it, phong_rgb_rmse, phong_exp_rel_err, imgloss_val)
            print(s)
            if log_file:
                log_file.write(s + '\n')

        # Show/save result image.        
        display_image = display_interval and (it % display_interval == 0)
        save_image = imgsave_interval and (it % imgsave_interval == 0)

        if display_image or save_image:
            result_image = util.run(color_opt, {mtx_in: a_mvp, invmtx_in: np.linalg.inv(a_mvp), campos_in: a_campos, lightdir_in: lightdir})[0]
        if display_image:
            util.display_image(result_image, size=display_res, title='%d / %d' % (it, max_iter))
        if save_image:
            util.save_image(out_dir + '/' + (imgsave_fn % it), result_image)

    # Done.
    if log_file:
        log_file.close()

#----------------------------------------------------------------------------
# Main function.
#----------------------------------------------------------------------------

def main():
    display_interval = 0
    for a in sys.argv[1:]:
        if a == '-v':
            display_interval = 10
        else:
            print("Usage: python envphong.py [-v]")
            exit()

    # Initialize TensorFlow.        
    util.init_tf()

    # Run.
    fit_env_phong(max_iter=1500, log_interval=10, display_interval=display_interval, out_dir='out/env_phong', log_fn='log.txt', imgsave_interval=100, imgsave_fn='img_%06d.png')

    # Done.
    print("Done.")

#----------------------------------------------------------------------------

if __name__ == "__main__":
    main()

#----------------------------------------------------------------------------