File size: 8,078 Bytes
f12ab4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import argparse
import os
import pathlib
import numpy as np
import torch
import imageio

import util

import nvdiffrast.torch as dr

# Transform vertex positions to clip space
def transform_pos(mtx, pos):
    t_mtx = torch.from_numpy(mtx).cuda() if isinstance(mtx, np.ndarray) else mtx
    # (x,y,z) -> (x,y,z,1)
    posw = torch.cat([pos, torch.ones([pos.shape[0], 1]).cuda()], axis=1)
    return torch.matmul(posw, t_mtx.t())[None, ...]

def render(glctx, mtx, pos, pos_idx, vtx_col, col_idx, resolution: int):
    pos_clip    = transform_pos(mtx, pos)
    rast_out, _ = dr.rasterize(glctx, pos_clip, pos_idx, resolution=[resolution, resolution])
    color, _    = dr.interpolate(vtx_col[None, ...], rast_out, col_idx)
    color       = dr.antialias(color, rast_out, pos_clip, pos_idx)
    return color

def make_grid(arr, ncols=2):
    n, height, width, nc = arr.shape
    nrows = n//ncols
    assert n == nrows*ncols
    return arr.reshape(nrows, ncols, height, width, nc).swapaxes(1,2).reshape(height*nrows, width*ncols, nc)

def fit_cube(max_iter          = 5000,
             resolution        = 4,
             discontinuous     = False,
             repeats           = 1,
             log_interval      = 10,
             display_interval  = None,
             display_res       = 512,
             out_dir           = None,
             log_fn            = None,
             mp4save_interval  = None,
             mp4save_fn        = None):

    log_file = None
    writer = None
    if out_dir:
        os.makedirs(out_dir, exist_ok=True)
        if log_fn:
            log_file = open(f'{out_dir}/{log_fn}', 'wt')
        if mp4save_interval != 0:
            writer = imageio.get_writer(f'{out_dir}/{mp4save_fn}', mode='I', fps=30, codec='libx264', bitrate='16M')
    else:
        mp4save_interval = None

    datadir = f'{pathlib.Path(__file__).absolute().parents[1]}/data'
    fn = 'cube_%s.npz' % ('d' if discontinuous else 'c')
    with np.load(f'{datadir}/{fn}') as f:
        pos_idx, vtxp, col_idx, vtxc = f.values()
    print("Mesh has %d triangles and %d vertices." % (pos_idx.shape[0], vtxp.shape[0]))

    # Create position/triangle index tensors
    pos_idx = torch.from_numpy(pos_idx.astype(np.int32)).cuda()
    col_idx = torch.from_numpy(col_idx.astype(np.int32)).cuda()
    vtx_pos = torch.from_numpy(vtxp.astype(np.float32)).cuda()
    vtx_col = torch.from_numpy(vtxc.astype(np.float32)).cuda()

    glctx = dr.RasterizeGLContext()

    # Repeats.
    for rep in range(repeats):

        ang = 0.0
        gl_avg = []

        vtx_pos_rand = np.random.uniform(-0.5, 0.5, size=vtxp.shape) + vtxp
        vtx_col_rand = np.random.uniform(0.0, 1.0, size=vtxc.shape)
        vtx_pos_opt  = torch.tensor(vtx_pos_rand, dtype=torch.float32, device='cuda', requires_grad=True)
        vtx_col_opt  = torch.tensor(vtx_col_rand, dtype=torch.float32, device='cuda', requires_grad=True)

        # Adam optimizer for vertex position and color with a learning rate ramp.
        optimizer    = torch.optim.Adam([vtx_pos_opt, vtx_col_opt], lr=1e-2)
        scheduler    = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: max(0.01, 10**(-x*0.0005)))

        for it in range(max_iter + 1):
            # Random rotation/translation matrix for optimization.
            r_rot = util.random_rotation_translation(0.25)

            # Smooth rotation for display.
            a_rot = np.matmul(util.rotate_x(-0.4), util.rotate_y(ang))

            # Modelview and modelview + projection matrices.
            proj  = util.projection(x=0.4)
            r_mv  = np.matmul(util.translate(0, 0, -3.5), r_rot)
            r_mvp = np.matmul(proj, r_mv).astype(np.float32)
            a_mv  = np.matmul(util.translate(0, 0, -3.5), a_rot)
            a_mvp = np.matmul(proj, a_mv).astype(np.float32)

            # Compute geometric error for logging.
            with torch.no_grad():
                geom_loss = torch.mean(torch.sum((torch.abs(vtx_pos_opt) - .5)**2, dim=1)**0.5)
                gl_avg.append(float(geom_loss))

            # Print/save log.
            if log_interval and (it % log_interval == 0):
                gl_val = np.mean(np.asarray(gl_avg))
                gl_avg = []
                s = ("rep=%d," % rep) if repeats > 1 else ""
                s += "iter=%d,err=%f" % (it, gl_val)
                print(s)
                if log_file:
                    log_file.write(s + "\n")

            color     = render(glctx, r_mvp, vtx_pos, pos_idx, vtx_col, col_idx, resolution)
            color_opt = render(glctx, r_mvp, vtx_pos_opt, pos_idx, vtx_col_opt, col_idx, resolution)

            # Compute loss and train.
            loss = torch.mean((color - color_opt)**2) # L2 pixel loss.
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            scheduler.step()

            # Show/save image.
            display_image = display_interval and (it % display_interval == 0)
            save_mp4      = mp4save_interval and (it % mp4save_interval == 0)

            if display_image or save_mp4:
                ang = ang + 0.01

                img_b = color[0].cpu().numpy()
                img_o = color_opt[0].detach().cpu().numpy()
                img_d = render(glctx, a_mvp, vtx_pos_opt, pos_idx, vtx_col_opt, col_idx, display_res)[0]
                img_r = render(glctx, a_mvp, vtx_pos, pos_idx, vtx_col, col_idx, display_res)[0]

                scl = display_res // img_o.shape[0]
                img_b = np.repeat(np.repeat(img_b, scl, axis=0), scl, axis=1)
                img_o = np.repeat(np.repeat(img_o, scl, axis=0), scl, axis=1)
                result_image = make_grid(np.stack([img_o, img_b, img_d.detach().cpu().numpy(), img_r.cpu().numpy()]))

                if display_image:
                    util.display_image(result_image, size=display_res, title='%d / %d' % (it, max_iter))
                if save_mp4:
                    writer.append_data(np.clip(np.rint(result_image*255.0), 0, 255).astype(np.uint8))

    # Done.
    if writer is not None:
        writer.close()
    if log_file:
        log_file.close()

#----------------------------------------------------------------------------

def main():
    parser = argparse.ArgumentParser(description='Cube fit example')
    parser.add_argument('--outdir', help='Specify output directory', default='')
    parser.add_argument('--discontinuous', action='store_true', default=False)
    parser.add_argument('--resolution', type=int, default=0, required=True)
    parser.add_argument('--display-interval', type=int, default=0)
    parser.add_argument('--mp4save-interval', type=int, default=100)
    parser.add_argument('--max-iter', type=int, default=1000)
    args = parser.parse_args()

    # Set up logging.
    if args.outdir:
        ds = 'd' if args.discontinuous else 'c'
        out_dir = f'{args.outdir}/cube_{ds}_{args.resolution}'
        print (f'Saving results under {out_dir}')
    else:
        out_dir = None
        print ('No output directory specified, not saving log or images')

    # Run.
    fit_cube(
        max_iter=args.max_iter,
        resolution=args.resolution,
        discontinuous=args.discontinuous,
        log_interval=10,
        display_interval=args.display_interval,
        out_dir=out_dir,
        log_fn='log.txt',
        mp4save_interval=args.mp4save_interval,
        mp4save_fn='progress.mp4'
    )

    # Done.
    print("Done.")

#----------------------------------------------------------------------------

if __name__ == "__main__":
    main()

#----------------------------------------------------------------------------