File size: 10,249 Bytes
f12ab4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import argparse
import numpy as np
import torch
import os
import pathlib
import imageio

import util

import nvdiffrast.torch as dr

#----------------------------------------------------------------------------
# Environment map and Phong BRDF learning.
#----------------------------------------------------------------------------

def fit_env_phong(max_iter          = 1000,
                  log_interval      = 10,
                  display_interval  = None,
                  display_res       = 1024,
                  res               = 1024,
                  lr_base           = 1e-2,
                  lr_ramp           = 1.0,
                  out_dir           = None,
                  log_fn            = None,
                  mp4save_interval  = None,
                  mp4save_fn        = None):

    log_file = None
    writer = None
    if out_dir:
        os.makedirs(out_dir, exist_ok=True)
        if log_fn:
            log_file = open(out_dir + '/' + log_fn, 'wt')
        if mp4save_interval != 0:
            writer = imageio.get_writer(f'{out_dir}/{mp4save_fn}', mode='I', fps=30, codec='libx264', bitrate='16M')
    else:
        mp4save_interval = None

    # Texture adapted from https://github.com/WaveEngine/Samples/tree/master/Materials/EnvironmentMap/Content/Assets/CubeMap.cubemap
    datadir = f'{pathlib.Path(__file__).absolute().parents[1]}/data'
    with np.load(f'{datadir}/envphong.npz') as f:
        pos_idx, pos, normals, env = f.values()
    env = env.astype(np.float32)/255.0
    env = np.stack(env)[:, ::-1].copy()
    print("Mesh has %d triangles and %d vertices." % (pos_idx.shape[0], pos.shape[0]))

    # Move all the stuff to GPU.
    pos_idx = torch.as_tensor(pos_idx, dtype=torch.int32, device='cuda')
    pos = torch.as_tensor(pos, dtype=torch.float32, device='cuda')
    normals = torch.as_tensor(normals, dtype=torch.float32, device='cuda')
    env = torch.as_tensor(env, dtype=torch.float32, device='cuda')

    # Target Phong parameters.
    phong_rgb = np.asarray([1.0, 0.8, 0.6], np.float32)
    phong_exp = 25.0
    phong_rgb_t = torch.as_tensor(phong_rgb, dtype=torch.float32, device='cuda')

    # Learned variables: environment maps, phong color, phong exponent.
    env_var = torch.ones_like(env) * .5
    env_var.requires_grad_()
    phong_var_raw = torch.as_tensor(np.random.uniform(size=[4]), dtype=torch.float32, device='cuda')
    phong_var_raw.requires_grad_()
    phong_var_mul = torch.as_tensor([1.0, 1.0, 1.0, 10.0], dtype=torch.float32, device='cuda')

    # Render.
    ang = 0.0
    imgloss_avg, phong_avg = [], []
    glctx = dr.RasterizeGLContext()
    zero_tensor = torch.as_tensor(0.0, dtype=torch.float32, device='cuda')
    one_tensor = torch.as_tensor(1.0, dtype=torch.float32, device='cuda')

    # Adam optimizer for environment map and phong with a learning rate ramp.
    optimizer = torch.optim.Adam([env_var, phong_var_raw], lr=lr_base)
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: lr_ramp**(float(x)/float(max_iter)))

    for it in range(max_iter + 1):
        phong_var = phong_var_raw * phong_var_mul

        # Random rotation/translation matrix for optimization.
        r_rot = util.random_rotation_translation(0.25)

        # Smooth rotation for display.
        ang = ang + 0.01
        a_rot = np.matmul(util.rotate_x(-0.4), util.rotate_y(ang))

        # Modelview and modelview + projection matrices.
        proj  = util.projection(x=0.4, n=1.0, f=200.0)
        r_mv  = np.matmul(util.translate(0, 0, -3.5), r_rot)
        r_mvp = np.matmul(proj, r_mv).astype(np.float32)
        a_mv  = np.matmul(util.translate(0, 0, -3.5), a_rot)
        a_mvp = np.matmul(proj, a_mv).astype(np.float32)
        a_mvc = a_mvp
        r_mvp = torch.as_tensor(r_mvp, dtype=torch.float32, device='cuda')
        a_mvp = torch.as_tensor(a_mvp, dtype=torch.float32, device='cuda')

        # Solve camera positions.
        a_campos = torch.as_tensor(np.linalg.inv(a_mv)[:3, 3], dtype=torch.float32, device='cuda')
        r_campos = torch.as_tensor(np.linalg.inv(r_mv)[:3, 3], dtype=torch.float32, device='cuda')

        # Random light direction.        
        lightdir = np.random.normal(size=[3])
        lightdir /= np.linalg.norm(lightdir) + 1e-8
        lightdir = torch.as_tensor(lightdir, dtype=torch.float32, device='cuda')

        def render_refl(ldir, cpos, mvp):
            # Transform and rasterize.
            viewvec = pos[..., :3] - cpos[np.newaxis, np.newaxis, :] # View vectors at vertices.
            reflvec = viewvec - 2.0 * normals[np.newaxis, ...] * torch.sum(normals[np.newaxis, ...] * viewvec, -1, keepdim=True) # Reflection vectors at vertices.
            reflvec = reflvec / torch.sum(reflvec**2, -1, keepdim=True)**0.5 # Normalize.
            pos_clip = torch.matmul(pos, mvp.t())[np.newaxis, ...]
            rast_out, rast_out_db = dr.rasterize(glctx, pos_clip, pos_idx, [res, res])
            refl, refld = dr.interpolate(reflvec, rast_out, pos_idx, rast_db=rast_out_db, diff_attrs='all') # Interpolated reflection vectors.

            # Phong light.
            refl = refl / (torch.sum(refl**2, -1, keepdim=True) + 1e-8)**0.5  # Normalize.
            ldotr = torch.sum(-ldir * refl, -1, keepdim=True) # L dot R.

            # Return
            return refl, refld, ldotr, (rast_out[..., -1:] == 0)

        # Render the reflections.
        refl, refld, ldotr, mask = render_refl(lightdir, r_campos, r_mvp)

        # Reference color. No need for AA because we are not learning geometry.
        color = dr.texture(env[np.newaxis, ...], refl, uv_da=refld, filter_mode='linear-mipmap-linear', boundary_mode='cube')
        color = color + phong_rgb_t * torch.max(zero_tensor, ldotr) ** phong_exp # Phong.
        color = torch.where(mask, one_tensor, color) # White background.

        # Candidate rendering same up to this point, but uses learned texture and Phong parameters instead.
        color_opt = dr.texture(env_var[np.newaxis, ...], refl, uv_da=refld, filter_mode='linear-mipmap-linear', boundary_mode='cube')
        color_opt = color_opt + phong_var[:3] * torch.max(zero_tensor, ldotr) ** phong_var[3] # Phong.
        color_opt = torch.where(mask, one_tensor, color_opt) # White background.

        # Compute loss and train.
        loss = torch.mean((color - color_opt)**2) # L2 pixel loss.
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        scheduler.step()

        # Collect losses.
        imgloss_avg.append(loss.detach().cpu().numpy())
        phong_avg.append(phong_var.detach().cpu().numpy())

        # Print/save log.
        if log_interval and (it % log_interval == 0):
            imgloss_val, imgloss_avg = np.mean(np.asarray(imgloss_avg, np.float32)), []
            phong_val, phong_avg = np.mean(np.asarray(phong_avg, np.float32), axis=0), []
            phong_rgb_rmse = np.mean((phong_val[:3] - phong_rgb)**2)**0.5
            phong_exp_rel_err = np.abs(phong_val[3] - phong_exp)/phong_exp
            s = "iter=%d,phong_rgb_rmse=%f,phong_exp_rel_err=%f,img_rmse=%f" % (it, phong_rgb_rmse, phong_exp_rel_err, imgloss_val)
            print(s)
            if log_file:
                log_file.write(s + '\n')

        # Show/save result image.        
        display_image = display_interval and (it % display_interval == 0)
        save_mp4 = mp4save_interval and (it % mp4save_interval == 0)

        if display_image or save_mp4:
            lightdir = np.asarray([.8, -1., .5, 0.0])
            lightdir = np.matmul(a_mvc, lightdir)[:3]
            lightdir /= np.linalg.norm(lightdir)
            lightdir = torch.as_tensor(lightdir, dtype=torch.float32, device='cuda')
            refl, refld, ldotr, mask = render_refl(lightdir, a_campos, a_mvp)
            color_opt = dr.texture(env_var[np.newaxis, ...], refl, uv_da=refld, filter_mode='linear-mipmap-linear', boundary_mode='cube')
            color_opt = color_opt + phong_var[:3] * torch.max(zero_tensor, ldotr) ** phong_var[3]
            color_opt = torch.where(mask, one_tensor, color_opt)
            result_image = color_opt.detach()[0].cpu().numpy()
            if display_image:
                util.display_image(result_image, size=display_res, title='%d / %d' % (it, max_iter))
            if save_mp4:
                writer.append_data(np.clip(np.rint(result_image*255.0), 0, 255).astype(np.uint8))

    # Done.
    if writer is not None:
        writer.close()
    if log_file:
        log_file.close()

#----------------------------------------------------------------------------
# Main function.
#----------------------------------------------------------------------------

def main():
    parser = argparse.ArgumentParser(description='Environment map fitting example')
    parser.add_argument('--outdir', help='Specify output directory', default='')
    parser.add_argument('--display-interval', type=int, default=0)
    parser.add_argument('--mp4save-interval', type=int, default=10)
    parser.add_argument('--max-iter', type=int, default=5000)
    args = parser.parse_args()

    # Set up logging.
    if args.outdir:
        out_dir = f'{args.outdir}/env_phong'
        print (f'Saving results under {out_dir}')
    else:
        out_dir = None
        print ('No output directory specified, not saving log or images')

    # Run.
    fit_env_phong(
        max_iter=args.max_iter,
        log_interval=100,
        display_interval=args.display_interval,
        out_dir=out_dir,
        mp4save_interval=args.mp4save_interval,
        mp4save_fn='progress.mp4'
    )

    # Done.
    print("Done.")

#----------------------------------------------------------------------------

if __name__ == "__main__":
    main()

#----------------------------------------------------------------------------