File size: 11,557 Bytes
f12ab4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import argparse
import os
import pathlib
import numpy as np
import torch
import imageio

import util

import nvdiffrast.torch as dr

#----------------------------------------------------------------------------
# Quaternion math.
#----------------------------------------------------------------------------

# Unit quaternion.
def q_unit():
    return np.asarray([1, 0, 0, 0], np.float32)

# Get a random normalized quaternion.
def q_rnd():
    u, v, w = np.random.uniform(0.0, 1.0, size=[3])
    v *= 2.0 * np.pi
    w *= 2.0 * np.pi
    return np.asarray([(1.0-u)**0.5 * np.sin(v), (1.0-u)**0.5 * np.cos(v), u**0.5 * np.sin(w), u**0.5 * np.cos(w)], np.float32)

# Get a random quaternion from the octahedral symmetric group S_4.
_r2 = 0.5**0.5
_q_S4 = [[ 1.0, 0.0, 0.0, 0.0], [ 0.0, 1.0, 0.0, 0.0], [ 0.0, 0.0, 1.0, 0.0], [ 0.0, 0.0, 0.0, 1.0],
         [-0.5, 0.5, 0.5, 0.5], [-0.5,-0.5,-0.5, 0.5], [ 0.5,-0.5, 0.5, 0.5], [ 0.5, 0.5,-0.5, 0.5],
         [ 0.5, 0.5, 0.5, 0.5], [-0.5, 0.5,-0.5, 0.5], [ 0.5,-0.5,-0.5, 0.5], [-0.5,-0.5, 0.5, 0.5],
         [ _r2,-_r2, 0.0, 0.0], [ _r2, _r2, 0.0, 0.0], [ 0.0, 0.0, _r2, _r2], [ 0.0, 0.0,-_r2, _r2],
         [ 0.0, _r2, _r2, 0.0], [ _r2, 0.0, 0.0,-_r2], [ _r2, 0.0, 0.0, _r2], [ 0.0,-_r2, _r2, 0.0],
         [ _r2, 0.0, _r2, 0.0], [ 0.0, _r2, 0.0, _r2], [ _r2, 0.0,-_r2, 0.0], [ 0.0,-_r2, 0.0, _r2]]
def q_rnd_S4():
    return np.asarray(_q_S4[np.random.randint(24)], np.float32)

# Quaternion slerp.
def q_slerp(p, q, t):
    d = np.dot(p, q)
    if d < 0.0:
        q = -q
        d = -d
    if d > 0.999:
        a = p + t * (q-p)
        return a / np.linalg.norm(a)
    t0 = np.arccos(d)
    tt = t0 * t
    st = np.sin(tt)
    st0 = np.sin(t0)
    s1 = st / st0
    s0 = np.cos(tt) - d*s1
    return s0*p + s1*q

# Quaterion scale (slerp vs. identity quaternion).
def q_scale(q, scl):
    return q_slerp(q_unit(), q, scl)

# Quaternion product.
def q_mul(p, q):
    s1, V1 = p[0], p[1:]
    s2, V2 = q[0], q[1:]
    s = s1*s2 - np.dot(V1, V2)
    V = s1*V2 + s2*V1 + np.cross(V1, V2)
    return np.asarray([s, V[0], V[1], V[2]], np.float32)

# Angular difference between two quaternions in degrees.
def q_angle_deg(p, q):
    p = p.detach().cpu().numpy()
    q = q.detach().cpu().numpy()
    d = np.abs(np.dot(p, q))
    d = min(d, 1.0)
    return np.degrees(2.0 * np.arccos(d))

# Quaternion product
def q_mul_torch(p, q):
    a = p[0]*q[0] - p[1]*q[1] - p[2]*q[2] - p[3]*q[3]
    b = p[0]*q[1] + p[1]*q[0] + p[2]*q[3] - p[3]*q[2]
    c = p[0]*q[2] + p[2]*q[0] + p[3]*q[1] - p[1]*q[3]
    d = p[0]*q[3] + p[3]*q[0] + p[1]*q[2] - p[2]*q[1]
    return torch.stack([a, b, c, d])

# Convert quaternion to 4x4 rotation matrix.
def q_to_mtx(q):
    r0 = torch.stack([1.0-2.0*q[1]**2 - 2.0*q[2]**2, 2.0*q[0]*q[1] - 2.0*q[2]*q[3], 2.0*q[0]*q[2] + 2.0*q[1]*q[3]])
    r1 = torch.stack([2.0*q[0]*q[1] + 2.0*q[2]*q[3], 1.0 - 2.0*q[0]**2 - 2.0*q[2]**2, 2.0*q[1]*q[2] - 2.0*q[0]*q[3]])
    r2 = torch.stack([2.0*q[0]*q[2] - 2.0*q[1]*q[3], 2.0*q[1]*q[2] + 2.0*q[0]*q[3], 1.0 - 2.0*q[0]**2 - 2.0*q[1]**2])
    rr = torch.transpose(torch.stack([r0, r1, r2]), 1, 0)
    rr = torch.cat([rr, torch.tensor([[0], [0], [0]], dtype=torch.float32).cuda()], dim=1) # Pad right column.
    rr = torch.cat([rr, torch.tensor([[0, 0, 0, 1]], dtype=torch.float32).cuda()], dim=0)  # Pad bottom row.
    return rr

# Transform vertex positions to clip space
def transform_pos(mtx, pos):
    t_mtx = torch.from_numpy(mtx).cuda() if isinstance(mtx, np.ndarray) else mtx
    # (x,y,z) -> (x,y,z,1)
    posw = torch.cat([pos, torch.ones([pos.shape[0], 1]).cuda()], axis=1)
    return torch.matmul(posw, t_mtx.t())[None, ...]

def render(glctx, mtx, pos, pos_idx, col, col_idx, resolution: int):
    # Setup TF graph for reference.
    pos_clip    = transform_pos(mtx, pos)
    rast_out, _ = dr.rasterize(glctx, pos_clip, pos_idx, resolution=[resolution, resolution])
    color   , _ = dr.interpolate(col[None, ...], rast_out, col_idx)
    color       = dr.antialias(color, rast_out, pos_clip, pos_idx)
    return color

#----------------------------------------------------------------------------
# Cube pose fitter.
#----------------------------------------------------------------------------

def fit_pose(max_iter           = 10000,
             repeats            = 1,
             log_interval       = 10,
             display_interval   = None,
             display_res        = 512,
             lr_base            = 0.01,
             lr_falloff         = 1.0,
             nr_base            = 1.0,
             nr_falloff         = 1e-4,
             grad_phase_start   = 0.5,
             resolution         = 256,
             out_dir            = None,
             log_fn             = None,
             mp4save_interval   = None,
             mp4save_fn         = None):

    log_file = None
    writer = None
    if out_dir:
        os.makedirs(out_dir, exist_ok=True)
        if log_fn:
            log_file = open(out_dir + '/' + log_fn, 'wt')
        if mp4save_interval != 0:
            writer = imageio.get_writer(f'{out_dir}/{mp4save_fn}', mode='I', fps=30, codec='libx264', bitrate='16M')
    else:
        mp4save_interval = None

    datadir = f'{pathlib.Path(__file__).absolute().parents[1]}/data'
    with np.load(f'{datadir}/cube_p.npz') as f:
        pos_idx, pos, col_idx, col = f.values()
    print("Mesh has %d triangles and %d vertices." % (pos_idx.shape[0], pos.shape[0]))

    # Some input geometry contains vertex positions in (N, 4) (with v[:,3]==1).  Drop
    # the last column in that case.
    if pos.shape[1] == 4: pos = pos[:, 0:3]

    # Create position/triangle index tensors
    pos_idx = torch.from_numpy(pos_idx.astype(np.int32)).cuda()
    vtx_pos = torch.from_numpy(pos.astype(np.float32)).cuda()
    col_idx = torch.from_numpy(col_idx.astype(np.int32)).cuda()
    vtx_col = torch.from_numpy(col.astype(np.float32)).cuda()

    glctx = dr.RasterizeGLContext()

    for rep in range(repeats):
        pose_target = torch.tensor(q_rnd(), device='cuda')
        pose_init   = q_rnd()
        pose_opt    = torch.tensor(pose_init / np.sum(pose_init**2)**0.5, dtype=torch.float32, device='cuda', requires_grad=True)

        loss_best   = np.inf
        pose_best   = pose_opt.detach().clone()

        # Modelview + projection matrix.
        mvp = torch.tensor(np.matmul(util.projection(x=0.4), util.translate(0, 0, -3.5)).astype(np.float32), device='cuda')

        # Adam optimizer for texture with a learning rate ramp.
        optimizer = torch.optim.Adam([pose_opt], betas=(0.9, 0.999), lr=lr_base)
        # Render.
        for it in range(max_iter + 1):
            # Set learning rate.
            itf = 1.0 * it / max_iter
            nr = nr_base * nr_falloff**itf
            lr = lr_base * lr_falloff**itf
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

            # Noise input.
            if itf >= grad_phase_start:
                noise = q_unit()
            else:
                noise = q_scale(q_rnd(), nr)
                noise = q_mul(noise, q_rnd_S4()) # Orientation noise.

            # Render.
            color          = render(glctx, torch.matmul(mvp, q_to_mtx(pose_target)), vtx_pos, pos_idx, vtx_col, col_idx, resolution)
            pose_total_opt = q_mul_torch(pose_opt, noise)
            mtx_total_opt  = torch.matmul(mvp, q_to_mtx(pose_total_opt))
            color_opt      = render(glctx, mtx_total_opt, vtx_pos, pos_idx, vtx_col, col_idx, resolution)

            # Image-space loss.
            diff = (color_opt - color)**2 # L2 norm.
            diff = torch.tanh(5.0 * torch.max(diff, dim=-1)[0])
            loss = torch.mean(diff)

            # Measure image-space loss and update best found pose.
            loss_val = float(loss)
            if (loss_val < loss_best) and (loss_val > 0.0):
                pose_best = pose_total_opt.detach().clone()
                loss_best = loss_val
                if itf < grad_phase_start:
                    with torch.no_grad(): pose_opt[:] = pose_best

            # Print/save log.
            if log_interval and (it % log_interval == 0):
                err = q_angle_deg(pose_opt, pose_target)
                ebest = q_angle_deg(pose_best, pose_target)
                s = "rep=%d,iter=%d,err=%f,err_best=%f,loss=%f,loss_best=%f,lr=%f,nr=%f" % (rep, it, err, ebest, loss_val, loss_best, lr, nr)
                print(s)
                if log_file:
                    log_file.write(s + "\n")

            # Run gradient training step.
            if itf >= grad_phase_start:
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

            with torch.no_grad():
                pose_opt /= torch.sum(pose_opt**2)**0.5

            # Show/save image.
            display_image = display_interval and (it % display_interval == 0)
            save_mp4      = mp4save_interval and (it % mp4save_interval == 0)

            if display_image or save_mp4:
                c = color[0].detach().cpu().numpy()
                img_ref  = color[0].detach().cpu().numpy()
                img_opt  = color_opt[0].detach().cpu().numpy()
                img_best = render(glctx, torch.matmul(mvp, q_to_mtx(pose_best)), vtx_pos, pos_idx, vtx_col, col_idx, resolution)[0].detach().cpu().numpy()
                result_image = np.concatenate([img_ref, img_best, img_opt], axis=1)

                if display_image:
                    util.display_image(result_image, size=display_res, title='(%d) %d / %d' % (rep, it, max_iter))
                if save_mp4:
                    writer.append_data(np.clip(np.rint(result_image*255.0), 0, 255).astype(np.uint8))

    # Done.
    if writer is not None:
        writer.close()
    if log_file:
        log_file.close()

#----------------------------------------------------------------------------

def main():
    parser = argparse.ArgumentParser(description='Cube pose fitting example')
    parser.add_argument('--outdir', help='Specify output directory', default='')
    parser.add_argument('--display-interval', type=int, default=0)
    parser.add_argument('--mp4save-interval', type=int, default=10)
    parser.add_argument('--max-iter', type=int, default=1000)
    parser.add_argument('--repeats', type=int, default=1)
    args = parser.parse_args()

    # Set up logging.
    if args.outdir:
        out_dir = f'{args.outdir}/pose'
        print (f'Saving results under {out_dir}')
    else:
        out_dir = None
        print ('No output directory specified, not saving log or images')

    # Run.
    fit_pose(
        max_iter=args.max_iter,
        repeats=args.repeats,
        log_interval=100,
        display_interval=args.display_interval,
        out_dir=out_dir,
        log_fn='log.txt',
        mp4save_interval=args.mp4save_interval,
        mp4save_fn='progress.mp4'
    )

    # Done.
    print("Done.")

#----------------------------------------------------------------------------

if __name__ == "__main__":
    main()

#----------------------------------------------------------------------------