File size: 4,531 Bytes
f12ab4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import numpy as np
import torch

#----------------------------------------------------------------------------
# Projection and transformation matrix helpers.
#----------------------------------------------------------------------------

def projection(x=0.1, n=1.0, f=50.0):
    return np.array([[n/x,    0,            0,              0],
                     [  0, n/-x,            0,              0],
                     [  0,    0, -(f+n)/(f-n), -(2*f*n)/(f-n)],
                     [  0,    0,           -1,              0]]).astype(np.float32)

def translate(x, y, z):
    return np.array([[1, 0, 0, x],
                     [0, 1, 0, y],
                     [0, 0, 1, z],
                     [0, 0, 0, 1]]).astype(np.float32)

def rotate_x(a):
    s, c = np.sin(a), np.cos(a)
    return np.array([[1,  0, 0, 0],
                     [0,  c, s, 0],
                     [0, -s, c, 0],
                     [0,  0, 0, 1]]).astype(np.float32)

def rotate_y(a):
    s, c = np.sin(a), np.cos(a)
    return np.array([[ c, 0, s, 0],
                     [ 0, 1, 0, 0],
                     [-s, 0, c, 0],
                     [ 0, 0, 0, 1]]).astype(np.float32)

def random_rotation_translation(t):
    m = np.random.normal(size=[3, 3])
    m[1] = np.cross(m[0], m[2])
    m[2] = np.cross(m[0], m[1])
    m = m / np.linalg.norm(m, axis=1, keepdims=True)
    m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
    m[3, 3] = 1.0
    m[:3, 3] = np.random.uniform(-t, t, size=[3])
    return m

#----------------------------------------------------------------------------
# Bilinear downsample by 2x.
#----------------------------------------------------------------------------

def bilinear_downsample(x):
    w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0
    w = w.expand(x.shape[-1], 1, 4, 4) 
    x = torch.nn.functional.conv2d(x.permute(0, 3, 1, 2), w, padding=1, stride=2, groups=x.shape[-1])
    return x.permute(0, 2, 3, 1)

#----------------------------------------------------------------------------
# Image display function using OpenGL.
#----------------------------------------------------------------------------

_glfw_window = None
def display_image(image, zoom=None, size=None, title=None): # HWC
    # Import OpenGL and glfw.
    import OpenGL.GL as gl
    import glfw

    # Zoom image if requested.
    image = np.asarray(image)
    if size is not None:
        assert zoom is None
        zoom = max(1, size // image.shape[0])
    if zoom is not None:
        image = image.repeat(zoom, axis=0).repeat(zoom, axis=1)
    height, width, channels = image.shape

    # Initialize window.
    if title is None:
        title = 'Debug window'
    global _glfw_window
    if _glfw_window is None:
        glfw.init()
        _glfw_window = glfw.create_window(width, height, title, None, None)
        glfw.make_context_current(_glfw_window)
        glfw.show_window(_glfw_window)
        glfw.swap_interval(0)
    else:
        glfw.make_context_current(_glfw_window)
        glfw.set_window_title(_glfw_window, title)
        glfw.set_window_size(_glfw_window, width, height)

    # Update window.
    glfw.poll_events()
    gl.glClearColor(0, 0, 0, 1)
    gl.glClear(gl.GL_COLOR_BUFFER_BIT)
    gl.glWindowPos2f(0, 0)
    gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1)
    gl_format = {3: gl.GL_RGB, 2: gl.GL_RG, 1: gl.GL_LUMINANCE}[channels]
    gl_dtype = {'uint8': gl.GL_UNSIGNED_BYTE, 'float32': gl.GL_FLOAT}[image.dtype.name]
    gl.glDrawPixels(width, height, gl_format, gl_dtype, image[::-1])
    glfw.swap_buffers(_glfw_window)
    if glfw.window_should_close(_glfw_window):
        return False
    return True

#----------------------------------------------------------------------------
# Image save helper.
#----------------------------------------------------------------------------

def save_image(fn, x):
    import imageio
    x = np.rint(x * 255.0)
    x = np.clip(x, 0, 255).astype(np.uint8)
    imageio.imsave(fn, x)

#----------------------------------------------------------------------------