|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import os |
|
import pathlib |
|
import numpy as np |
|
import torch |
|
|
|
import util |
|
|
|
import nvdiffrast.torch as dr |
|
|
|
|
|
|
|
|
|
def transform_pos(mtx, pos): |
|
t_mtx = torch.from_numpy(mtx).cuda() if isinstance(mtx, np.ndarray) else mtx |
|
posw = torch.cat([pos, torch.ones([pos.shape[0], 1]).cuda()], axis=1) |
|
return torch.matmul(posw, t_mtx.t())[None, ...] |
|
|
|
def render(glctx, mtx, pos, pos_idx, uv, uv_idx, tex, resolution, enable_mip, max_mip_level): |
|
pos_clip = transform_pos(mtx, pos) |
|
rast_out, rast_out_db = dr.rasterize(glctx, pos_clip, pos_idx, resolution=[resolution, resolution]) |
|
|
|
if enable_mip: |
|
texc, texd = dr.interpolate(uv[None, ...], rast_out, uv_idx, rast_db=rast_out_db, diff_attrs='all') |
|
color = dr.texture(tex[None, ...], texc, texd, filter_mode='linear-mipmap-linear', max_mip_level=max_mip_level) |
|
else: |
|
texc, _ = dr.interpolate(uv[None, ...], rast_out, uv_idx) |
|
color = dr.texture(tex[None, ...], texc, filter_mode='linear') |
|
|
|
color = color * torch.clamp(rast_out[..., -1:], 0, 1) |
|
return color |
|
|
|
|
|
|
|
def fit_earth(max_iter = 20000, |
|
log_interval = 10, |
|
display_interval = None, |
|
display_res = 1024, |
|
enable_mip = True, |
|
res = 512, |
|
ref_res = 4096, |
|
lr_base = 1e-2, |
|
lr_ramp = 0.1, |
|
out_dir = None, |
|
log_fn = None, |
|
texsave_interval = None, |
|
texsave_fn = None, |
|
imgsave_interval = None, |
|
imgsave_fn = None): |
|
|
|
log_file = None |
|
if out_dir: |
|
os.makedirs(out_dir, exist_ok=True) |
|
if log_fn: |
|
log_file = open(out_dir + '/' + log_fn, 'wt') |
|
else: |
|
imgsave_interval, texsave_interval = None, None |
|
|
|
|
|
|
|
datadir = f'{pathlib.Path(__file__).absolute().parents[1]}/data' |
|
with np.load(f'{datadir}/earth.npz') as f: |
|
pos_idx, pos, uv_idx, uv, tex = f.values() |
|
tex = tex.astype(np.float32)/255.0 |
|
max_mip_level = 9 |
|
print("Mesh has %d triangles and %d vertices." % (pos_idx.shape[0], pos.shape[0])) |
|
|
|
|
|
|
|
if pos.shape[1] == 4: pos = pos[:, 0:3] |
|
|
|
|
|
pos_idx = torch.from_numpy(pos_idx.astype(np.int32)).cuda() |
|
vtx_pos = torch.from_numpy(pos.astype(np.float32)).cuda() |
|
uv_idx = torch.from_numpy(uv_idx.astype(np.int32)).cuda() |
|
vtx_uv = torch.from_numpy(uv.astype(np.float32)).cuda() |
|
|
|
tex = torch.from_numpy(tex.astype(np.float32)).cuda() |
|
tex_opt = torch.full(tex.shape, 0.2, device='cuda', requires_grad=True) |
|
glctx = dr.RasterizeGLContext() |
|
|
|
ang = 0.0 |
|
|
|
|
|
optimizer = torch.optim.Adam([tex_opt], lr=lr_base) |
|
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: lr_ramp**(float(x)/float(max_iter))) |
|
|
|
|
|
ang = 0.0 |
|
texloss_avg = [] |
|
for it in range(max_iter + 1): |
|
|
|
r_rot = util.random_rotation_translation(0.25) |
|
|
|
|
|
a_rot = np.matmul(util.rotate_x(-0.4), util.rotate_y(ang)) |
|
dist = np.random.uniform(0.0, 48.5) |
|
|
|
|
|
proj = util.projection(x=0.4, n=1.0, f=200.0) |
|
r_mv = np.matmul(util.translate(0, 0, -1.5 - dist), r_rot) |
|
r_mvp = np.matmul(proj, r_mv).astype(np.float32) |
|
a_mv = np.matmul(util.translate(0, 0, -3.5), a_rot) |
|
a_mvp = np.matmul(proj, a_mv).astype(np.float32) |
|
|
|
|
|
with torch.no_grad(): |
|
texmask = torch.zeros_like(tex) |
|
tr = tex.shape[1]//4 |
|
texmask[tr+13:2*tr-13, 25:-25, :] += 1.0 |
|
texmask[25:-25, tr+13:2*tr-13, :] += 1.0 |
|
|
|
|
|
texloss = (torch.sum(texmask * (tex - tex_opt)**2)/torch.sum(texmask))**0.5 |
|
texloss_avg.append(float(texloss)) |
|
|
|
|
|
color = render(glctx, r_mvp, vtx_pos, pos_idx, vtx_uv, uv_idx, tex, ref_res, True, max_mip_level) |
|
color_opt = render(glctx, r_mvp, vtx_pos, pos_idx, vtx_uv, uv_idx, tex_opt, res, enable_mip, max_mip_level) |
|
|
|
|
|
while color.shape[1] > res: |
|
color = util.bilinear_downsample(color) |
|
|
|
|
|
loss = torch.mean((color - color_opt)**2) |
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
scheduler.step() |
|
|
|
|
|
if log_interval and (it % log_interval == 0): |
|
texloss_val = np.mean(np.asarray(texloss_avg)) |
|
texloss_avg = [] |
|
psnr = -10.0 * np.log10(texloss_val**2) |
|
s = "iter=%d,loss=%f,psnr=%f" % (it, texloss_val, psnr) |
|
print(s) |
|
if log_file: |
|
log_file.write(s + '\n') |
|
|
|
|
|
display_image = display_interval and (it % display_interval == 0) |
|
save_image = imgsave_interval and (it % imgsave_interval == 0) |
|
save_texture = texsave_interval and (it % texsave_interval) == 0 |
|
|
|
if display_image or save_image: |
|
ang = ang + 0.1 |
|
|
|
with torch.no_grad(): |
|
result_image = render(glctx, a_mvp, vtx_pos, pos_idx, vtx_uv, uv_idx, tex_opt, res, enable_mip, max_mip_level)[0].cpu().numpy() |
|
|
|
if display_image: |
|
util.display_image(result_image, size=display_res, title='%d / %d' % (it, max_iter)) |
|
if save_image: |
|
util.save_image(out_dir + '/' + (imgsave_fn % it), result_image) |
|
|
|
if save_texture: |
|
texture = tex_opt.cpu().numpy()[::-1] |
|
util.save_image(out_dir + '/' + (texsave_fn % it), texture) |
|
|
|
|
|
|
|
if log_file: |
|
log_file.close() |
|
|
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Earth texture fitting example') |
|
parser.add_argument('--outdir', help='Specify output directory', default='') |
|
parser.add_argument('--mip', action='store_true', default=False) |
|
parser.add_argument('--display-interval', type=int, default=0) |
|
parser.add_argument('--max-iter', type=int, default=10000) |
|
args = parser.parse_args() |
|
|
|
|
|
if args.outdir: |
|
ms = 'mip' if args.mip else 'nomip' |
|
out_dir = f'{args.outdir}/earth_{ms}' |
|
print (f'Saving results under {out_dir}') |
|
else: |
|
out_dir = None |
|
print ('No output directory specified, not saving log or images') |
|
|
|
|
|
fit_earth(max_iter=args.max_iter, log_interval=10, display_interval=args.display_interval, enable_mip=args.mip, out_dir=out_dir, log_fn='log.txt', texsave_interval=1000, texsave_fn='tex_%06d.png', imgsave_interval=1000, imgsave_fn='img_%06d.png') |
|
|
|
|
|
print("Done.") |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|
|
|