File size: 4,869 Bytes
df321c6
6af31c0
df321c6
 
 
 
6af31c0
ffcb713
366eb95
df321c6
8dac3c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a1f47c
 
 
4077dc3
 
8dac3c1
 
 
 
 
 
 
445b175
4ee53fe
 
 
 
 
 
 
 
 
df321c6
 
 
 
4ee53fe
 
 
 
 
 
 
df321c6
 
 
 
 
 
 
 
e4c8a16
e18eaf4
 
df321c6
6af31c0
e18eaf4
445b175
 
df321c6
e18eaf4
 
 
 
 
 
 
6af31c0
445b175
 
 
6af31c0
 
e18eaf4
366eb95
 
e18eaf4
 
445b175
6af31c0
e18eaf4
445b175
6af31c0
 
e18eaf4
 
6af31c0
445b175
6af31c0
 
445b175
df321c6
366eb95
445b175
366eb95
445b175
 
df321c6
366eb95
 
df321c6
 
445b175
df321c6
 
445b175
366eb95
6af31c0
 
4ee53fe
366eb95
df321c6
4ee53fe
 
 
df321c6
2f6de14
df321c6
 
 
 
 
4ee53fe
 
 
 
 
 
df321c6
 
 
 
90547c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import re
import pandas as pd
import plotly.express as px
import streamlit as st

st.set_page_config(layout="wide")
DATA_FILE = "data/aclanthology2016-23_specter2_base.json"
THEMES = {"cluster": "fall", "year": "mint", "source": "phase"}

st.markdown(
    """
    <link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha256-DF7Zhf293AJxJNTmh5zhoYYIMs2oXitRfBjY+9L//AY=" crossorigin="anonymous">
    <link rel="preconnect" href="https://fonts.googleapis.com">
    <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
    <link href="https://fonts.googleapis.com/css2?family=Permanent+Marker&display=swap" rel="stylesheet">

    <style>
    .title {
        font-family: 'Permanent Marker', cursive;
        font-size: 2.0rem;
    }
    </style>""",
    unsafe_allow_html=True,
)

st.sidebar.write(
    """<center><p class="title">
    acl-spectrum
    </p></center>""",
    unsafe_allow_html=True,
)
st.sidebar.write(
    """<p class="text-justify">
    An interactive t-SNE visualization of <a href="https://huggingface.co/allenai/specter2_base">spectre2</a> embeddings
    featuring over 12K papers (titles and abstracts) from the <a href="https://aclanthology.org/">ACL Anthology</a>
    spanning 2016 to 2023.
    For more details, check out our <a href="https://huggingface.co/spaces/gwf-uwaterloo/acl-spectrum/blob/main/README.md">README</a>
    and our step-by-step guide <a href="https://huggingface.co/spaces/gwf-uwaterloo/acl-spectrum/blob/main/scipapers_scatter.ipynb">here</a>.
    </p>""",
    unsafe_allow_html=True,
)

st.sidebar.markdown(
    "Happy exploring! :rocket::rocket:"
)

def to_string_authors(list_of_authors):
    if len(list_of_authors) > 5:
        return ", ".join(list_of_authors[:5]) + ", et al."
    elif len(list_of_authors) > 2:
        return ", ".join(list_of_authors[:-1]) + ", and " + list_of_authors[-1]
    else:
        return " and ".join(list_of_authors)


def load_df(data_file: os.PathLike):
    df = pd.read_json(data_file, orient="records")
    df["x"] = df["point2d"].apply(lambda x: x[0])
    df["y"] = df["point2d"].apply(lambda x: x[1])

    df["authors_trimmed"] = df.authors.apply(
        lambda row: to_string_authors(
            [(x[x.index(",") + 1 :].strip() + " " + x.split(",")[0].strip()) if "," in x else x for x in row]
        )
    )

    if "publication_type" in df.columns:
        df["type"] = df["publication_type"]
        df = df.drop(columns=["point2d", "publication_type"])
    else:
        df = df.drop(columns=["point2d"])
    return df


@st.cache_data
def load_dataframe():
    return load_df(DATA_FILE)


DF = load_dataframe()
DF["opacity"] = 0.04
min_year, max_year = DF["year"].min(), DF["year"].max()

with st.sidebar:
    venues = st.multiselect(
        "Venues",
        ["ACL", "EMNLP", "NAACL", "TACL"],
        ["ACL", "EMNLP", "NAACL", "TACL"],
    )

    start_year, end_year = st.select_slider(
        "Publication year",
        options=[str(y) for y in range(min_year, max_year + 1)],
        value=(str(min_year), str(max_year)),
    )
    author_names = st.text_input("Author names (separated by comma)")

    title = st.text_input("Title")

    start_year = int(start_year)
    end_year = int(end_year)
    df_mask = (DF["year"] >= start_year) & (DF["year"] <= end_year)
    if 0 < len(venues) < 4:
        selected_venues = [v.lower() for v in venues]
        df_mask = df_mask & DF["source"].isin(selected_venues)
    elif not venues:
        st.write(":red[Please select a venue]")

    if author_names:
        authors = [a.strip() for a in author_names.split(",")]
        author_mask = DF.authors.apply(
            lambda row: all(any(re.match(rf".*{a}.*", x, re.IGNORECASE) for x in row) for a in authors)
        )
        df_mask = df_mask & author_mask

    if title:
        df_mask = df_mask & DF.title.apply(lambda x: title.lower() in x.lower())

    DF.loc[df_mask, "opacity"] = 1.0
    st.write(f"Number of points: {DF[df_mask].shape[0]}")

    color = st.selectbox("Color", ("cluster", "year", "source"))


fig = px.scatter(
    DF,
    x="x",
    y="y",
    opacity=DF["opacity"],
    color=color,
    width=1000,
    height=800,
    custom_data=("title", "authors_trimmed", "year", "source", "type"),
    color_continuous_scale=THEMES[color],
)
fig.update_traces(
    hovertemplate="<b>%{customdata[0]}</b><br>%{customdata[1]}<br>%{customdata[2]}<br><i>%{customdata[3]}</i>"
)
fig.update_layout(
    # margin=dict(l=10, r=10, t=10, b=10),
    showlegend=False,
    font=dict(
        family="Times New Roman",
        size=30,
    ),
    hoverlabel=dict(
        align="left",
        font_size=14,
        font_family="Rockwell",
        namelength=-1,
    ),
)
fig.update_xaxes(title="")
fig.update_yaxes(title="")

st.plotly_chart(fig, use_container_width=True)