Commit
·
475ca58
1
Parent(s):
7111d0e
Update main.py
Browse files
main.py
CHANGED
@@ -1,2 +1,45 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException, Query
|
2 |
-
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#from fastapi import FastAPI, HTTPException, Query
|
2 |
+
#import pandas as pd
|
3 |
+
from fastapi import FastAPI
|
4 |
+
from pydantic import BaseModel
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
6 |
+
|
7 |
+
app = FastAPI()
|
8 |
+
|
9 |
+
# Load the pre-trained model and tokenizer
|
10 |
+
model_name = "gyesibiney/covid-tweet-sentimental-Analysis-roberta"
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
|
14 |
+
# Create a sentiment analysis pipeline
|
15 |
+
sentiment = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
16 |
+
|
17 |
+
# Define a request body model
|
18 |
+
class SentimentRequest(BaseModel):
|
19 |
+
text: str
|
20 |
+
|
21 |
+
# Define a response model
|
22 |
+
class SentimentResponse(BaseModel):
|
23 |
+
sentiment: str
|
24 |
+
score: float
|
25 |
+
|
26 |
+
# Create an endpoint for sentiment analysis
|
27 |
+
@app.post("/sentiment/")
|
28 |
+
async def analyze_sentiment(request: SentimentRequest):
|
29 |
+
input_text = request.text
|
30 |
+
result = sentiment(input_text)
|
31 |
+
sentiment_label = result[0]["label"]
|
32 |
+
sentiment_score = result[0]["score"]
|
33 |
+
|
34 |
+
if sentiment_label == "LABEL_1":
|
35 |
+
sentiment_label = "positive"
|
36 |
+
elif sentiment_label == "LABEL_0":
|
37 |
+
sentiment_label = "neutral"
|
38 |
+
else:
|
39 |
+
sentiment_label = "negative"
|
40 |
+
|
41 |
+
return SentimentResponse(sentiment=sentiment_label.capitalize(), score=sentiment_score)
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
import uvicorn
|
45 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|