Commit
·
b7ac8b4
1
Parent(s):
1c1ef2c
Update main.py
Browse files
main.py
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
-
|
2 |
-
#import pandas as pd
|
3 |
-
from fastapi import FastAPI
|
4 |
from pydantic import BaseModel
|
5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
6 |
|
@@ -14,32 +12,33 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
14 |
# Create a sentiment analysis pipeline
|
15 |
sentiment = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# Define a request body model
|
18 |
class SentimentRequest(BaseModel):
|
19 |
text: str
|
20 |
|
21 |
# Define a response model
|
22 |
class SentimentResponse(BaseModel):
|
23 |
-
sentiment:
|
24 |
score: float
|
25 |
|
26 |
-
# Create an endpoint for sentiment analysis
|
27 |
-
@app.
|
28 |
-
async def analyze_sentiment(
|
29 |
-
|
30 |
-
result = sentiment(input_text)
|
31 |
sentiment_label = result[0]["label"]
|
32 |
sentiment_score = result[0]["score"]
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
sentiment_label = "neutral"
|
38 |
-
else:
|
39 |
-
sentiment_label = "negative"
|
40 |
-
|
41 |
-
return SentimentResponse(sentiment=sentiment_label.capitalize(), score=sentiment_score)
|
42 |
|
43 |
if __name__ == "__main__":
|
44 |
import uvicorn
|
45 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
1 |
+
from fastapi import FastAPI, Query
|
|
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
4 |
|
|
|
12 |
# Create a sentiment analysis pipeline
|
13 |
sentiment = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
14 |
|
15 |
+
# Create a dictionary to map sentiment labels to binary values
|
16 |
+
sentiment_label_mapping = {
|
17 |
+
"LABEL_1": 1, # Positive
|
18 |
+
"LABEL_0": 0, # Negative
|
19 |
+
}
|
20 |
+
|
21 |
# Define a request body model
|
22 |
class SentimentRequest(BaseModel):
|
23 |
text: str
|
24 |
|
25 |
# Define a response model
|
26 |
class SentimentResponse(BaseModel):
|
27 |
+
sentiment: int # 1 for positive, 0 for negative
|
28 |
score: float
|
29 |
|
30 |
+
# Create an endpoint for sentiment analysis with query parameter
|
31 |
+
@app.get("/sentiment/")
|
32 |
+
async def analyze_sentiment(text: str = Query(..., description="Input text for sentiment analysis")):
|
33 |
+
result = sentiment(text)
|
|
|
34 |
sentiment_label = result[0]["label"]
|
35 |
sentiment_score = result[0]["score"]
|
36 |
+
|
37 |
+
sentiment_value = sentiment_label_mapping.get(sentiment_label, -1) # Default to -1 for unknown labels
|
38 |
+
|
39 |
+
return SentimentResponse(sentiment=sentiment_value, score=sentiment_score)
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
if __name__ == "__main__":
|
42 |
import uvicorn
|
43 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
44 |
+
|