Last commit not found
import torchmetrics | |
from . import config | |
from typing import Tuple, Dict, List, Any | |
import numpy as np | |
import torch | |
import torchvision | |
import torch.nn as nn | |
import pytorch_lightning as ptl | |
class DeepFontBaseline(nn.Module): | |
def __init__(self) -> None: | |
super().__init__() | |
self.model = nn.Sequential( | |
nn.Conv2d(3, 64, 11, 2), | |
nn.BatchNorm2d(64), | |
nn.ReLU(), | |
nn.MaxPool2d(2, 2), | |
nn.Conv2d(64, 128, 3, 1, 1), | |
nn.BatchNorm2d(128), | |
nn.ReLU(), | |
nn.MaxPool2d(2, 2), | |
nn.Conv2d(128, 256, 3, 1, 1), | |
nn.ReLU(), | |
nn.Conv2d(256, 256, 3, 1, 1), | |
nn.ReLU(), | |
nn.Conv2d(256, 256, 3, 1, 1), | |
nn.ReLU(), | |
# fc | |
nn.Flatten(), | |
nn.Linear(256 * 12 * 12, 4096), | |
nn.ReLU(), | |
nn.Linear(4096, 4096), | |
nn.ReLU(), | |
nn.Linear(4096, config.FONT_COUNT), | |
) | |
def forward(self, X): | |
return self.model(X) | |
class ResNet18Regressor(nn.Module): | |
def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False): | |
super().__init__() | |
weights = torchvision.models.ResNet18_Weights.DEFAULT if pretrained else None | |
self.model = torchvision.models.resnet18(weights=weights) | |
self.model.fc = nn.Linear(512, config.FONT_COUNT + 12) | |
self.regression_use_tanh = regression_use_tanh | |
def forward(self, X): | |
X = self.model(X) | |
# [0, 1] | |
if not self.regression_use_tanh: | |
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid() | |
else: | |
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh() | |
return X | |
class ResNet34Regressor(nn.Module): | |
def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False): | |
super().__init__() | |
weights = torchvision.models.ResNet34_Weights.DEFAULT if pretrained else None | |
self.model = torchvision.models.resnet34(weights=weights) | |
self.model.fc = nn.Linear(512, config.FONT_COUNT + 12) | |
self.regression_use_tanh = regression_use_tanh | |
def forward(self, X): | |
X = self.model(X) | |
# [0, 1] | |
if not self.regression_use_tanh: | |
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid() | |
else: | |
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh() | |
return X | |
class ResNet50Regressor(nn.Module): | |
def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False): | |
super().__init__() | |
weights = torchvision.models.ResNet50_Weights.DEFAULT if pretrained else None | |
self.model = torchvision.models.resnet50(weights=weights) | |
self.model.fc = nn.Linear(2048, config.FONT_COUNT + 12) | |
self.regression_use_tanh = regression_use_tanh | |
def forward(self, X): | |
X = self.model(X) | |
# [0, 1] | |
if not self.regression_use_tanh: | |
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid() | |
else: | |
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh() | |
return X | |
class ResNet101Regressor(nn.Module): | |
def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False): | |
super().__init__() | |
weights = torchvision.models.ResNet101_Weights.DEFAULT if pretrained else None | |
self.model = torchvision.models.resnet101(weights=weights) | |
self.model.fc = nn.Linear(2048, config.FONT_COUNT + 12) | |
self.regression_use_tanh = regression_use_tanh | |
def forward(self, X): | |
X = self.model(X) | |
# [0, 1] | |
if not self.regression_use_tanh: | |
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid() | |
else: | |
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh() | |
return X | |
class FontDetectorLoss(nn.Module): | |
def __init__( | |
self, lambda_font, lambda_direction, lambda_regression, font_classification_only | |
): | |
super().__init__() | |
self.category_loss = nn.CrossEntropyLoss() | |
self.regression_loss = nn.MSELoss() | |
self.lambda_font = lambda_font | |
self.lambda_direction = lambda_direction | |
self.lambda_regression = lambda_regression | |
self.font_classfiication_only = font_classification_only | |
def forward(self, y_hat, y): | |
font_cat = self.category_loss(y_hat[..., : config.FONT_COUNT], y[..., 0].long()) | |
if self.font_classfiication_only: | |
return self.lambda_font * font_cat | |
direction_cat = self.category_loss( | |
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1].long() | |
) | |
regression = self.regression_loss( | |
y_hat[..., config.FONT_COUNT + 2 :], y[..., 2:] | |
) | |
return ( | |
self.lambda_font * font_cat | |
+ self.lambda_direction * direction_cat | |
+ self.lambda_regression * regression | |
) | |
class CosineWarmupScheduler(torch.optim.lr_scheduler._LRScheduler): | |
def __init__(self, optimizer, warmup, max_iters): | |
self.warmup = warmup | |
self.max_num_iters = max_iters | |
super().__init__(optimizer) | |
def get_lr(self): | |
lr_factor = self.get_lr_factor(epoch=self.last_epoch) | |
return [base_lr * lr_factor for base_lr in self.base_lrs] | |
def get_lr_factor(self, epoch): | |
lr_factor = 0.5 * (1 + np.cos(np.pi * epoch / self.max_num_iters)) | |
if epoch <= self.warmup: | |
lr_factor *= epoch * 1.0 / self.warmup | |
return lr_factor | |
class FontDetector(ptl.LightningModule): | |
def __init__( | |
self, | |
model: nn.Module, | |
lambda_font: float, | |
lambda_direction: float, | |
lambda_regression: float, | |
font_classification_only: bool, | |
lr: float, | |
betas: Tuple[float, float], | |
num_warmup_iters: int, | |
num_iters: int, | |
num_epochs: int, | |
): | |
super().__init__() | |
self.model = model | |
self.loss = FontDetectorLoss( | |
lambda_font, lambda_direction, lambda_regression, font_classification_only | |
) | |
self.font_accur_train = torchmetrics.Accuracy( | |
task="multiclass", num_classes=config.FONT_COUNT | |
) | |
self.font_accur_val = torchmetrics.Accuracy( | |
task="multiclass", num_classes=config.FONT_COUNT | |
) | |
self.font_accur_test = torchmetrics.Accuracy( | |
task="multiclass", num_classes=config.FONT_COUNT | |
) | |
if not font_classification_only: | |
self.direction_accur_train = torchmetrics.Accuracy( | |
task="multiclass", num_classes=2 | |
) | |
self.direction_accur_val = torchmetrics.Accuracy( | |
task="multiclass", num_classes=2 | |
) | |
self.direction_accur_test = torchmetrics.Accuracy( | |
task="multiclass", num_classes=2 | |
) | |
self.lr = lr | |
self.betas = betas | |
self.num_warmup_iters = num_warmup_iters | |
self.num_iters = num_iters | |
self.num_epochs = num_epochs | |
self.load_epoch = 0 | |
self.font_classification_only = font_classification_only | |
def forward(self, x): | |
return self.model(x) | |
def training_step( | |
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int | |
) -> Dict[str, Any]: | |
X, y = batch | |
y_hat = self.forward(X) | |
loss = self.loss(y_hat, y) | |
self.log("train_loss", loss, prog_bar=True, sync_dist=True) | |
# accur | |
self.log( | |
"train_font_accur", | |
self.font_accur_train(y_hat[..., : config.FONT_COUNT], y[..., 0]), | |
sync_dist=True, | |
) | |
if not self.font_classification_only: | |
self.log( | |
"train_direction_accur", | |
self.direction_accur_train( | |
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1] | |
), | |
sync_dist=True, | |
) | |
return {"loss": loss} | |
def on_train_epoch_end(self) -> None: | |
self.log("train_font_accur", self.font_accur_train.compute(), sync_dist=True) | |
self.font_accur_train.reset() | |
if not self.font_classification_only: | |
self.log( | |
"train_direction_accur", | |
self.direction_accur_train.compute(), | |
sync_dist=True, | |
) | |
self.direction_accur_train.reset() | |
def validation_step( | |
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int | |
) -> Dict[str, Any]: | |
X, y = batch | |
y_hat = self.forward(X) | |
loss = self.loss(y_hat, y) | |
self.log("val_loss", loss, prog_bar=True, sync_dist=True) | |
self.font_accur_val.update(y_hat[..., : config.FONT_COUNT], y[..., 0]) | |
if not self.font_classification_only: | |
self.direction_accur_val.update( | |
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1] | |
) | |
return {"loss": loss} | |
def on_validation_epoch_end(self): | |
self.log("val_font_accur", self.font_accur_val.compute(), sync_dist=True) | |
self.font_accur_val.reset() | |
if not self.font_classification_only: | |
self.log( | |
"val_direction_accur", | |
self.direction_accur_val.compute(), | |
sync_dist=True, | |
) | |
self.direction_accur_val.reset() | |
def test_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int): | |
X, y = batch | |
y_hat = self.forward(X) | |
loss = self.loss(y_hat, y) | |
self.log("test_loss", loss, prog_bar=True, sync_dist=True) | |
self.font_accur_test.update(y_hat[..., : config.FONT_COUNT], y[..., 0]) | |
if not self.font_classification_only: | |
self.direction_accur_test.update( | |
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1] | |
) | |
return {"loss": loss} | |
def on_test_epoch_end(self) -> None: | |
self.log("test_font_accur", self.font_accur_test.compute(), sync_dist=True) | |
self.font_accur_test.reset() | |
if not self.font_classification_only: | |
self.log( | |
"test_direction_accur", | |
self.direction_accur_test.compute(), | |
sync_dist=True, | |
) | |
self.direction_accur_test.reset() | |
def configure_optimizers(self): | |
optimizer = torch.optim.Adam( | |
self.model.parameters(), lr=self.lr, betas=self.betas | |
) | |
self.scheduler = CosineWarmupScheduler( | |
optimizer, self.num_warmup_iters, self.num_iters | |
) | |
print("Load epoch:", self.load_epoch) | |
for _ in range(self.num_iters * self.load_epoch // self.num_epochs): | |
self.scheduler.step() | |
print("Current learning rate set to:", self.scheduler.get_last_lr()) | |
return optimizer | |
def optimizer_step( | |
self, | |
epoch: int, | |
batch_idx: int, | |
optimizer, | |
optimizer_idx: int = 0, | |
*args, | |
**kwargs | |
): | |
super().optimizer_step( | |
epoch, batch_idx, optimizer, optimizer_idx, *args, **kwargs | |
) | |
self.log("lr", self.scheduler.get_last_lr()[0]) | |
self.scheduler.step() | |
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: | |
self.load_epoch = checkpoint["epoch"] | |